Abstract:
The technical challenges for a smooth transition between using both a thermodynamic hydrate inhibitor (THI) and a kinetic hydrate inhibitor (KHI) to simply using only the KHI in multiple tie-in gas natural gas production systems is solved by adding more THI in a first pipeline leg of the production system while ceasing adding THI in a second pipeline leg of the system. Further, more KHI is added into the second leg of the system, and subsequently THI is gradually and/or slowly reduced in the remaining legs of the system until only KHI is being injected, after which the KHI amount in all legs may be reduced to the equilibrium or steady-state levels.
Abstract:
Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4. The multi-component catalyst system further includes a second catalyst component generally represented by the formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4 and wherein the second catalyst component exhibits a higher ethylene response than the first catalyst component.
Abstract:
System and methods for media distribution are described. In one embodiment, a method of media distribution includes rendering of a media to a user, stopping the rendering of the media, and storing remaining media not rendered to the user in a user server. The method further includes receiving a request to stream the remaining media to the user, dividing the remaining media into segments, and assigning a priority to each segment. The remaining media is streamed, leaving out segments with priority lower than a threshold priority.
Abstract:
A wireless communication network and a method for adaptively selecting a route for communications are disclosed. The wireless communication network includes a central node and a plurality of sub-nodes, of which the sub-nodes include relay nodes and terminal nodes, the central node has a function of routing control for communications in the whole wireless communication network, the relay node has a forwarding function, and the terminal node has a transceiving function. The method includes: generating a global routing table of the wireless communication network based on a predetermined criterion, by the central node independently or in cooperation with a part of the relay nodes; generating a local routing table of each of the sub-nodes based on the global routing table, and informing the local routing tables to the respective sub-nodes to store the local routing tables in the respective sub-nodes, by the central node independently or in cooperation with a part of the relay nodes, the local routing table including paths from the corresponding sub-node to adjacent nodes, wherein the local routing tables of at least a part of the sub-nodes each include a plurality of paths; and adaptively selecting, by the sub-node, a path from the local routing table thereof for communications according to a predetermined rule. According to this invention, chance of collision in communications is reduced, and energy saving is realized.
Abstract:
Embodiments of the present invention provide a method, apparatus and system for temporal synchronization of digital content based on a marker symbol and a marker code. A marker symbol is inserted at an identifiable location of a payload (e.g., the beginning and/or end of a payload) at regular intervals in the digital content and the payload is marker coded to form a periodic sequence. The payload is marker coded such that the maker symbol is not repeated by the coded payload. The periodic sequence is then embedded into digital content. A decoder is able to re-synchronize the payload by determining the location of the marker symbol. As such, a method, apparatus and system is provided for robust temporal synchronization for, for example, content encoding and decoding for applications such as audio and video water-marking and the like.
Abstract:
An image processing method can be performed on a video image that includes an initial frame and a plurality of subsequent frames. An object is located within the initial frame of the video image and a histogram related to the object is generated. A foreground map that includes the object is also generated. For each subsequent frame, a mean shift iteration is performed to adjust the location of the object within the current frame. The histogram related to the object and the foreground map can then be updated.
Abstract:
The ability to remove a watermark from encoded content (e.g., an image) opens the possibility of various novel applications. Several such applications are detailed. One employs a reversible watermark in conjunction with a second (robust) watermark. In this arrangement, the payload of the reversible watermark conveys information about the robust watermark (e.g., encoding parameters, or an error signal), permitting removal of the robust watermark from an uncorrupted encoded image. By such arrangements, the encoded image can be fully restored to its pristine, unencoded state even if several different watermarks have been applied.
Abstract:
A method and apparatus for embedding watermark data into a data stream using the insertion of low frequency carriers modulated by the watermark data into selected spatio-temporal volumes having equal total luminance values
Abstract:
Oxazolidinium compounds are formed by the reaction of a halohydrin or an epoxide with a secondary amine and an aldehyde or a ketone. The oxazolidinium compounds are formed directly and do not require the reaction of a pre-formed oxazolidine with an alkylating agent. The compounds are useful as gas hydrate inhibitors in oil and gas production and transportation.