Abstract:
A method of and a system for processing a slurry containing organic components, such as biomass, having a water contents of at least 50%, comprises a pump and heater or heat exchanger to bring the liquid in the slurry in a supercritical state. A reactor converts at least a part of the organic components in the slurry. A separator removes gaseous products from the converted slurry. A mixer adds fluid from the converted slurry to the slurry upstream from the reactor.
Abstract:
Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.
Abstract:
A system and method for the on-site separating and treating of a hydrocarbon liquid stream at an oil and gas production site is disclosed. The system comprises an oil and condensate distillation unit and a vapor recovery unit. In one embodiment, the oil and condensate distillation unit operates at low pressure or vacuum conditions to reduce the vapor pressure above the column of oil within a distillation column, thereby increasing the production of oil and condensate and capturing entrained natural gas otherwise lost or burned off. In another embodiment, oil from the distillation column can be measured by a flow meter and then transferred to one or more of an oil tank, a mobile tank, and an oil pipeline. Optionally, produced water at the production site can be run through the oil and condensate distillation unit to reduce the volume of produced water. The system further functions to improve the quality and volume of recovered natural gas and to decrease air pollution, in addition to increasing oil and condensate production at the well site.
Abstract:
Methods for regenerating a bed of organosilica particles and producing a treated gaseous stream are described herein. A method for regenerating a bed of organosilica particles includes introducing a heated regenerate stream to a bed of organosilica particles comprising captured C3+ hydrocarbons under conditions sufficient to remove at least a portion of the captured C3+ hydrocarbons from the organosilica particles; and introducing a cooled regenerate gaseous stream to the heated bed of organosilica particles. The regenerated organosilica particles are used to treat additional gaseous streams.
Abstract:
A device for converting carbon dioxide in flue gas into natural gas using dump energy. The device includes a transformer and rectifier device, an electrolytic cell, a turbine, a carbon dioxide heater, a primary fixed bed reactor, a secondary fixed bed reactor, a natural gas condenser, and a process water line. An outlet of the transformer and rectifier device is connected to a power interface of the electrolytic cell, a gas-liquid outlet of a cathode of the electrolytic cell is connected to a gas-liquid inlet of a hydrogen separator, and a liquid outlet of the hydrogen separator is connected to a liquid reflux port of the cathode of the electrolytic cell.
Abstract:
Methods of forming a high surface area compacted MOF powder are disclosed, as well as MOF pellets formed thereby. The method may include synthesizing a metal organic framework (MOF) powder using a first solvent, exchanging the first solvent with a second solvent such that pores of the MOF powder are at least 10% filled with the second solvent, compacting the MOF powder having pores at least 10% filled with the second solvent into a pellet, and desolvating the compacted pellet to remove the second solvent. The pellet may maintain a specific surface area after compacting that is at least 80% its initial specific surface area. Compacting the MOF powder with a solvent at least partially filling its pores may prevent or reduce crushing of the MOF pore structure and maintain surface area, for example, for hydrogen or natural gas storage.
Abstract:
Described herein are fuel modifiers for natural gas reciprocating engines, while recognizing the application of the inventions herein may be applied more broadly, to other natural gas-based engine systems. The fuel modifiers are primarily free-radical initiators, and the presence of this fuel modifier allows the engine operator to operate the engine under leaner conditions because, while employing the same ignition energy, more free-radicals are formed, thus overcoming the problems associated with dilution of the pool of free-radicals in the flame.
Abstract:
Embodiments of the invention provide a process in which a gas comprising biomethane having a heating value of less than about 925 BTU/cubic foot is introduced to a pipeline system that is connected to at least one source of natural gas having a heating value of at least about 950 BTU/cubic foot. The gas comprising biomethane combines with natural gas in the pipeline system to produce a mixed gas having a heating value below about 925 BTU/cubic foot. An amount of natural gas at least equal to the amount of gas comprising biomethane is withdrawn from the pipeline system for use as a transportation fuel, a fuel intermediate or as a feedstock for producing a fuel. The process can enable fuel credit generation and/or reductions in life cycle greenhouse gas emissions.
Abstract:
The present invention provides a perfluorophosphate-based drag-reducing agent for gas pipelines. Raw materials for the perfluorophosphate-based drag-reducing agent for gas pipelines consist of fatty acid(s), pyridine(s), fluorophosphates(s) and haloalkane(s) in a mass ratio of 2:1:1:1 to 2:3:1:2. A method for preparing the perfluorophosphate-based drag-reducing agent for gas pipelines is also provided. The perfluorophosphate-based drag-reducing agent for gas pipelines is non-toxic and environmentally friendly, has a high drag reduction percentage, a long-lasting effect, good stability and solubility, does not affect the inner surface and coatings of natural gas pipelines or gas quality, and is suitable for on-line atomization and injection.
Abstract:
Embodiments of the invention provide a process in which a gas comprising biomethane having a heating value of less than about 925 BTU/cubic foot is introduced to a pipeline system that is connected to at least one source of natural gas having a heating value of at least about 950 BTU/cubic foot. The gas comprising biomethane combines with natural gas in the pipeline system to produce a mixed gas having a heating value below about 925 BTU/cubic foot. An amount of natural gas at least equal to the amount of gas comprising biomethane is withdrawn from the pipeline system for use as a transportation fuel, a fuel intermediate or as a feedstock for producing a fuel. The process can enable fuel credit generation and/or reductions in life cycle greenhouse gas emissions.