Applying Shrinkage Factor to Real-Time OBM Filtrate Contamination Monitoring
    112.
    发明申请
    Applying Shrinkage Factor to Real-Time OBM Filtrate Contamination Monitoring 审中-公开
    将收缩因子应用于实时OBM滤液污染监测

    公开(公告)号:US20160186560A1

    公开(公告)日:2016-06-30

    申请号:US14975704

    申请日:2015-12-18

    CPC classification number: E21B49/10 E21B2049/085

    Abstract: A downhole tool operable to pump a volume of contaminated fluid from a subterranean formation during an elapsed pumping time while obtaining in-situ, real-time data associated with the contaminated fluid. The contaminated fluid includes native formation fluid and oil-based mud (OBM) filtrate. A shrinkage factor of the contaminated fluid is determined based on the in-situ, real-time data. The contaminated fluid shrinkage factor is fit relative to pumped volume or pumping time to obtain a function relating the shrinkage factor with pumped volume or elapsed pumping time. A shrinkage factor of the native formation fluid is determined based on the function. A shrinkage factor of the OBM filtrate is also determined. OBM filtrate volume percentage is determined based on the shrinkage factor of the native formation fluid and the shrinkage factor of the OBM filtrate.

    Abstract translation: 一种井下工具,其可操作以在经过的抽吸时间期间从地下地层泵送一定体积的污染流体,同时获得与受污染流体相关的原位实时数据。 受污染的流体包括天然地层流体和油基泥浆(OBM)滤液。 基于原位实时数据确定受污染流体的收缩因子。 受污染的流体收缩因子相对于泵送体积或泵送时间是适合的,以获得与收缩因子与泵送体积或经过的抽吸时间相关的功能。 基于该功能确定天然地层流体的收缩因子。 还测定了OBM滤液的收缩因子。 基于天然地层流体的收缩因子和OBM滤液的收缩率确定OBM滤液体积百分比。

    Fluid Composition Using Optical Analysis and Gas Chromatography
    113.
    发明申请
    Fluid Composition Using Optical Analysis and Gas Chromatography 审中-公开
    使用光学分析和气相色谱的流体组成

    公开(公告)号:US20160177716A1

    公开(公告)日:2016-06-23

    申请号:US14574334

    申请日:2014-12-17

    CPC classification number: G01V8/10 E21B49/10 E21B2049/085 G01N2030/8854

    Abstract: Methods and systems are provided for determining a gas/oil ratio using gas chromatography and optical analysis of a fluid sample obtained using a fluid sampling tool. In some embodiments, a gas/oil ratio may be determined from the mass fraction of each light component of the fluid, the mass fraction of each intermediate component of the fluid, a molecular weight of each light component of the fluid, a molecular weight of each intermediate component of the fluid, the density of stock tank oil, the vapor mass fraction of the intermediate components of the fluid, and the mass fraction of the plus fraction of the fluid. In some embodiments, a gas/oil ratio may be determined from the density of stock tank oil, the vapor mole fraction of the intermediate components of the fluid, and the molecular weight of stock tank oil.

    Abstract translation: 提供了使用气相色谱法和使用流体采样工具获得的流体样品的光学分析来确定气/油比的方法和系统。 在一些实施方案中,气体/油比可以根据流体的每个轻组分的质量分数,流体的每个中间组分的质量分数,流体的每种轻组分的分子量, 流体的每个中间分量,储罐油的密度,流体的中间组分的蒸汽质量分数和流体的正分数的质量分数。 在一些实施例中,气/油比可以根据储油罐油的密度,流体的中间成分的蒸汽摩尔分数和储油罐油的分子量来确定。

    Systems and Methods For Formation Fluid Sampling
    114.
    发明申请
    Systems and Methods For Formation Fluid Sampling 审中-公开
    用于形成流体取样的系统和方法

    公开(公告)号:US20160130940A1

    公开(公告)日:2016-05-12

    申请号:US14534813

    申请日:2014-11-06

    CPC classification number: E21B49/10

    Abstract: Embodiments of the disclosure can include systems and methods for formation fluid sampling. In one embodiment, a method can include monitoring a relationship between a first characteristic of a formation fluid extracted from a formation and a second characteristic of the formation fluid extracted from the formation, determining, based at least in part on the monitoring, that a linear trend is exhibited by the relationship between the first characteristic of the formation fluid extracted from the formation and the second characteristic of the formation fluid extracted from the formation, and determining a reservoir fluid breakthrough based at least in part on the identification of the linear trend, wherein the reservoir fluid breakthrough is indicative of virgin reservoir fluid entering a sampling tool.

    Abstract translation: 本公开的实施例可以包括用于地层流体取样的系统和方法。 在一个实施例中,方法可以包括监测从地层提取的地层流体的第一特征与从地层提取的地层流体的第二特征之间的关系,至少部分地基于监测确定线性 从地层中提取的地层流体的第一特征与从地层抽取的地层流体的第二特征之间的关系表现出趋势,并且至少部分地基于线性趋势的识别来确定储层流体穿透, 其中储存器流体突破指示进入采样工具的原始储层流体。

    Assessing Reservoir Connectivity In Hydrocarbon Reservoirs
    115.
    发明申请
    Assessing Reservoir Connectivity In Hydrocarbon Reservoirs 有权
    评估油气藏中的油藏连通性

    公开(公告)号:US20150136962A1

    公开(公告)日:2015-05-21

    申请号:US14406516

    申请日:2013-03-07

    Abstract: A method is disclosed for assessing connectivity between sections in a hydrocarbon reservoir. Samples of hydrocarbons are collected over different depths in at least one wellbore. Fluorescence intensity determines the actual heavy end concentrations of hydrocarbons for the corresponding COLLECT GAS CONDENSATE different depths. Estimated heavy end concentrations of hydrocarbons for corresponding different depths are determined and the actual heavy end concentrations of hydrocarbons are compared with the estimated heavy end concentrations to assess connectivity between sections of the hydrocarbon reservoir.

    Abstract translation: 公开了一种用于评估碳氢化合物油藏中各段之间连通性的方法。 在至少一个井眼中不同深度收集烃的样品。 荧光强度决定了相应的COLLECT GAS CONDENSATE不同深度的烃的实际重端浓度。 确定相应不同深度的烃的重质末端浓度,并将烃的实际重馏分浓度与估计的重尾浓度进行比较,以评估烃储层断面之间的连通性。

    Method for Characterization of Hydrocarbon Reservoirs
    116.
    发明申请
    Method for Characterization of Hydrocarbon Reservoirs 审中-公开
    油气藏特征分析方法

    公开(公告)号:US20150006084A1

    公开(公告)日:2015-01-01

    申请号:US14373019

    申请日:2013-01-17

    Abstract: A methodology that performs fluid sampling within a wellbore traversing a reservoir and fluid analysis on the fluid sample(s) to determine properties (including asphaltene concentration) of the fluid sample(s). At least one model is used to predict asphaltene concentration as a function of location in the reservoir. The predicted asphaltene concentrations are compared with corresponding concentrations measured by the fluid analysis to identify if the asphaltene of the fluid sample(s) corresponds to a particular asphaltene type (e.g., asphaltene clusters common in heavy oil). If so, a viscosity model is used to derive viscosity of the reservoir fluids as a function of location in the reservoir. The viscosity model allows for gradients in the viscosity of the reservoir fluids as a function of depth. The results of the viscosity model (and/or parts thereof) can be used in reservoir understanding workflows and in reservoir simulation.

    Abstract translation: 在穿过储层的井筒内进行流体取样并在流体样品上进行流体分析以确定流体样品的性质(包括沥青质浓度)的方法。 使用至少一个模型来预测沥青质浓度作为储层中位置的函数。 将预测的沥青质浓度与通过流体分析测量的相应浓度进行比较,以确定流体样品的沥青质是否对应于特定的沥青质类型(例如重油中常见的沥青质簇)。 如果是这样,使用粘度模型来导出储层流体的粘度作为储层中的位置的函数。 粘度模型允许储层流体的粘度梯度作为深度的函数。 粘度模型(和/或其部分)的结果可用于油藏理解工作流程和油藏模拟。

Patent Agency Ranking