Abstract:
Methods and devices for determining a plus fraction of a plus fraction of a gas chromatogram are provided. A gas chromatogram may obtained, such as from a downhole gas chromatograph module of a fluid analysis tool. The plus fraction of the gas chromatogram may be determined using one or more of a ratiometric determination, fitting an exponential decay function, and fitting a probability density gamma function.
Abstract:
A downhole tool operable to pump a volume of contaminated fluid from a subterranean formation during an elapsed pumping time while obtaining in-situ, real-time data associated with the contaminated fluid. The contaminated fluid includes native formation fluid and oil-based mud (OBM) filtrate. A shrinkage factor of the contaminated fluid is determined based on the in-situ, real-time data. The contaminated fluid shrinkage factor is fit relative to pumped volume or pumping time to obtain a function relating the shrinkage factor with pumped volume or elapsed pumping time. A shrinkage factor of the native formation fluid is determined based on the function. A shrinkage factor of the OBM filtrate is also determined. OBM filtrate volume percentage is determined based on the shrinkage factor of the native formation fluid and the shrinkage factor of the OBM filtrate.
Abstract:
Methods and systems are provided for determining a gas/oil ratio using gas chromatography and optical analysis of a fluid sample obtained using a fluid sampling tool. In some embodiments, a gas/oil ratio may be determined from the mass fraction of each light component of the fluid, the mass fraction of each intermediate component of the fluid, a molecular weight of each light component of the fluid, a molecular weight of each intermediate component of the fluid, the density of stock tank oil, the vapor mass fraction of the intermediate components of the fluid, and the mass fraction of the plus fraction of the fluid. In some embodiments, a gas/oil ratio may be determined from the density of stock tank oil, the vapor mole fraction of the intermediate components of the fluid, and the molecular weight of stock tank oil.
Abstract:
Embodiments of the disclosure can include systems and methods for formation fluid sampling. In one embodiment, a method can include monitoring a relationship between a first characteristic of a formation fluid extracted from a formation and a second characteristic of the formation fluid extracted from the formation, determining, based at least in part on the monitoring, that a linear trend is exhibited by the relationship between the first characteristic of the formation fluid extracted from the formation and the second characteristic of the formation fluid extracted from the formation, and determining a reservoir fluid breakthrough based at least in part on the identification of the linear trend, wherein the reservoir fluid breakthrough is indicative of virgin reservoir fluid entering a sampling tool.
Abstract:
A method is disclosed for assessing connectivity between sections in a hydrocarbon reservoir. Samples of hydrocarbons are collected over different depths in at least one wellbore. Fluorescence intensity determines the actual heavy end concentrations of hydrocarbons for the corresponding COLLECT GAS CONDENSATE different depths. Estimated heavy end concentrations of hydrocarbons for corresponding different depths are determined and the actual heavy end concentrations of hydrocarbons are compared with the estimated heavy end concentrations to assess connectivity between sections of the hydrocarbon reservoir.
Abstract translation:公开了一种用于评估碳氢化合物油藏中各段之间连通性的方法。 在至少一个井眼中不同深度收集烃的样品。 荧光强度决定了相应的COLLECT GAS CONDENSATE不同深度的烃的实际重端浓度。 确定相应不同深度的烃的重质末端浓度,并将烃的实际重馏分浓度与估计的重尾浓度进行比较,以评估烃储层断面之间的连通性。
Abstract:
A methodology that performs fluid sampling within a wellbore traversing a reservoir and fluid analysis on the fluid sample(s) to determine properties (including asphaltene concentration) of the fluid sample(s). At least one model is used to predict asphaltene concentration as a function of location in the reservoir. The predicted asphaltene concentrations are compared with corresponding concentrations measured by the fluid analysis to identify if the asphaltene of the fluid sample(s) corresponds to a particular asphaltene type (e.g., asphaltene clusters common in heavy oil). If so, a viscosity model is used to derive viscosity of the reservoir fluids as a function of location in the reservoir. The viscosity model allows for gradients in the viscosity of the reservoir fluids as a function of depth. The results of the viscosity model (and/or parts thereof) can be used in reservoir understanding workflows and in reservoir simulation.