Abstract:
It is presented a power supply for providing power to control a power switch for a high voltage application. The power supply comprises: a high voltage divider arranged to be connected to a first current terminal of the power switch; a step down DC/DC converter connected to an output of the high voltage divider, wherein the step down DC/DC converter is arrange to provide an output voltage for control of the at least one power switch to an output of the power supply; and a bypass control unit arranged to control the high voltage divider to short circuit an main input and a main output of the high voltage divider when the voltage across the power switch is lower than a threshold voltage.
Abstract:
A bushing structure for switchgear includes first and second separate support structures (30, 32) each having surfaces defining at least one opening (48). The support structures are coupled together so that the openings define a passage (49) through the bushing structure and so that a slot (50) is defined between the first and second support structures, surrounding the passage. A bushing (40) is disposed in the passage and has a body (42), a bus receiving member (44), and a compression structure (45). The bus receiving member has an opening (46) there-through sized to receive a bus bar (28). When the first and second support structures are coupled together with the bushing in the passage, the compression structure is disposed in the slot, sandwiched between the first and second support structures so that they exert pressure on the compression structure.
Abstract:
Among other things, one or more techniques and/or systems are provided for assessing power system equipment of a power system. Historical sensor data and/or historical field test data collected from the power system equipment may be utilized to develop a health profile of the power system equipment. The health profile is indicative of a predicted health (e.g., or probability of failure) of the power system equipment. In one embodiment, the health profile further comprises a health index score which evaluates that health of the power system equipment in terms of the importance of the power system equipment to the power system. Using the health profiles developed for a plurality of power system equipment, a maintenance strategy for at least a portion of the power system may be developed.
Abstract:
Among other things, one or more techniques and/or systems are provided for monitoring an operating condition of an electrical component, such as electrical switchgear. In one example, temperatures associated with an electrical conductor connection within the electrical component may be evaluated against one or more expected temperatures curves derived from a linear regression model to determine whether the electrical conductor connection has failed or is starting to fail. In another example, temperature readings may be monitored to determine whether a temperature reading at one location is out of sync with temperature readings at other locations. An electrical conductor connection associated with a location of the out of sync temperature may be determined as faulty. In another example, a Euclidean distance model and/or a correlation coefficient model may be used to identify a faulty electrical conductor connection. In this way, failure and/or potential failure of the electrical component may be predicted.
Abstract:
It is presented a high voltage DC/DC converter for converting between a first DC connection and a second DC connection. The high voltage DC/DC converter comprises: a first set of DC terminals; a second set of DC terminals); a multiphase transformer device comprising a plurality of primary windings and a corresponding plurality of secondary windings; a first converter arranged to convert DC to AC, comprising a plurality of phase legs serially connected between the first set of DC terminals, wherein each phase leg is connected to an AC connection of a respective primary winding; and a second converter arranged to convert AC from the secondary windings to DC on the second set of DC terminals.
Abstract:
A method in a converter station for communication within a DC power transmission system including two or more interconnected converter stations includes receiving, in the converter station, a synchronization signal for synchronizing the two or more converter stations; obtaining, in the converter station, an allocation of a communication time slot; changing, in the converter station, a set-point DC voltage level during the communication time slot; and measuring, in the converter station, a change of DC current in timeslots other than the communication time slot. A communication method utilizing the DC power transmission system itself is thus provided.
Abstract:
A system is provided for creating and/or collecting, storing and providing access to data from an electric power device which contains a cooling or operating liquid. A sensing device is mounted on the electric power device. The sensing device includes a microprocessor/microcontroller, a memory, a display panel, an input panel, and a tag read/write apparatus. A sampling container for holding a liquid sample to be taken from the electric power device has a container tag mounted thereon. The tag read/write apparatus uses a wireless communication link, when a sample has been taken, to transmit (i) administrative data denoting the electric power device, and (ii) diagnosis data denoting the sample taken to the container tag. The diagnosis data can be input directly using the input panel of the sensing device when a sample has been taken.
Abstract:
A protection relay for protecting an electric system, includes means a manner of a time multiplier value, a manner of calculating, with the received time multiplier value, and an inverse definite time dependency having an exponentiation function. The dependency defines a relationship between an excitation level of an input signal to the relay and an operating time of the relay. The relay further a manner of shifting the dependency to a predefined calculation space, and includes a manner of applying, during execution, the dependency shifted to the predefined calculation space when determining an operating condition of the relay.
Abstract:
A rear panel for a draw-out circuit breaker includes a metal plate having a pair of rectangular cutouts. Two bushing blocks are joined together and at least partially extend through the cutouts. Each molded bushing block includes three bushings, each of which carry an electrical conductor that is over-molded therein.
Abstract:
Exemplary embodiments of the present disclosure are directed to a method for producing a circuit-breaker pole part by molding an external insulating sleeve with insulation material, mounting a vacuum interrupter insert inside the insulating sleeve, electrically connecting the vacuum interrupter insert with an upper electrical terminal and a lower electrical terminal arranged in the wall section of the insulating sleeve The method also includes molding the external insulating sleeve, wherein only the upper electrical terminal is embedded in the insulation material, coating the vacuum interrupter insert with an extra layer made of insulation material for thermo extension compensation, mounting the coated vacuum interrupter insert by screwing on a threaded bolt onto the upper electrical terminal.