Abstract:
To perform distributed sensing with an optical fiber using Brillouin scattering, a light pulse is transmitted into the optical fiber, where the transmitted light pulse has a first frequency. Backscattered light and optical local oscillator light are combined, where the backscattered light is received from the optical fiber in response to the transmitted light pulse, and where the optical local oscillator light has a second frequency. A frequency offset is caused to be present between the first frequency of the transmitted light pulse and the second frequency of the optical local oscillator light, where the frequency offset is at least 1 GHz less than a Brillouin frequency shift of the backscattered light. Spectra representing Stokes and anti-Stokes components of the backscattered light are acquired, where the Stokes and anti-Stokes components are separated by a frequency span that is based on the frequency offset.
Abstract:
To perform distributed sensing with an optical fiber using Brillouin scattering, a light pulse is transmitted into the optical fiber, where the transmitted light pulse has a first frequency. Backscattered light and optical local oscillator light are combined, where the backscattered light is received from the optical fiber in response to the transmitted light pulse, and where the optical local oscillator light has a second frequency. A frequency offset is caused to be present between the first frequency of the transmitted light pulse and the second frequency of the optical local oscillator light, where the frequency offset is at least 1 GHz less than a Brillouin frequency shift of the backscattered light. Spectra representing Stokes and anti-Stokes components of the backscattered light are acquired, where the Stokes and anti-Stokes components are separated by a frequency span that is based on the frequency offset.
Abstract:
A method of treating a subterranean formation, the method comprising: (A) injecting down a well bore into the formation an admixture of (a) an emulsion having an internal aqueous phase comprising a water-soluble oil or gas field chemical or an aqueous dispersion of a water-dispersible oil or gas field chemical and an external oil phase comprising a liquid hydrocarbon and an oil-soluble surfactant and (b) a demulsifier comprising a solution of a surfactant having a cloud point temperature of above 40° C.; or (B) separately injecting down a well bore into the formation emulsion (a) and demulsifier (b) and generating an admixture of emulsion (a) and demulsifier (b) within the formation.
Abstract:
A scale inhibition method comprising: (a) injecting a dispersion of seed particles of an insoluble mineral salt in an aqueous medium into a formation through an injection well wherein the seed particles have an equivalent spherical diameter of 100% less than 100 nm, preferably 100% less than 50 nm, more preferably 100% less than 25 nm and the aqueous medium has dissolved therein precipitate precursor ions that form a precipitate of the insoluble mineral salt when contacted with resident ions in the formation; (b) allowing the dispersion to percolate through the subterranean formation towards production well and producing the dispersion from the production well; and (c) controllably precipitating the insoluble mineral salt onto the seed particles so as to reduce the deposition of the insoluble mineral salt onto the walls of the porous formation and/or onto the surface in the production well and/or onto the surface downstream of the production well.
Abstract:
A process for the removal of water from gas which comprises an absorption step of bringing a gas saturated with water vapor into gas-liquid contact with a water-lean absorbing liquid comprising a water absorbing liquid having a cloud point temperature above the freezing point of water whereby water vapor present in the gas is absorbed into the water-lean absorbing liquid at a temperature below its cloud point to produce a refined gas having a reduced water vapor content and water-loaded absorbing liquid. A regeneration step is provided in which the water-loaded absorbing liquid is heated to above the cloud point temperature of the absorbing liquid whereby the water-loaded absorbing liquid separates into a water-rich phase and an absorbing liquid-rich phase and the absorbing liquid-rich phase is cooled to a temperature below its cloud point prior to recycling the absorbing liquid-rich phase for use as water-lean absorbing liquid in the absorption step.
Abstract:
A method of starting up a Fischer-Tropsch reaction in a system comprising at least one high shear mixing zone and a reactor vessel which method comprises a) passing a suspension of a particulate Fischer-Tropsch catalyst in a liquid medium through the high shear mixing zone(s) into the reactor vessel and recycling at least a portion of the suspension to the high shear mixing zone(s) in the substantial absence of a gaseous reactant feed stream comprising synthesis gas; b) increasing the temperature and/or pressure within the reactor vessel until a threshold temperature and/or pressure is reached and subsequently introducing a gaseous reactant stream comprising synthesis gas into the high shear mixing zone(s) where the gaseous reactant stream is mixed with the suspension; c) discharging a mixture comprising synthesis gas and the suspension from the high shear mixing zone(s) into the reactor vessel; d) converting the synthesis gas to liquid hydrocarbons in the reactor vessel to form a product suspension comprising the particulate Fischer-Tropsch catalyst suspended in the liquid medium and liquid hydrocarbons; and e) recycling at least a portion of the product suspension to the high shear mixing zone(s).
Abstract:
A process for the conversion of synthesis gas into higher hydrocarbon products in a system comprising a high shear mixing zone and a post mixing zone wherein the process comprises: a) passing a suspension of catalyst in a liquid medium through the high shear mixing zone where the suspension is mixed with synthesis gas; b) discharging a mixture of synthesis gas and suspension from the high shear mixing zone into the post mixing zone; c) converting at least a portion of the synthesis gas to higher hydrocarbons in the post mixing zone to form a product suspensi n comprising catalyst suspended in the liquid medium and the higher hydrocarbons; d) separating a gaseous stream comprising uncoverted synthesis gas from the product suspension; e) recycling the separated gaseous stream to the high shear mixing zone; and f) recycling at least a portion of the product suspension to the high shear mixing zone.
Abstract:
A method of identifying inflow locations along a wellbore includes obtaining an acoustic signal from a sensor within the wellbore, determining a plurality of frequency domain features from the acoustic signal, and identifying, using a plurality of fluid flow models, a presence of at least one of a gas phase inflow, an aqueous phase inflow, or a hydrocarbon liquid phase inflow at one or more fluid flow locations. The acoustic signal includes acoustic samples across a portion of a depth of the wellbore, and the plurality of frequency domain features are obtained across a plurality of depth intervals within the portion of the depth of the wellbore. Each fluid flow model of the plurality of fluid inflow models uses one or more frequency domain features of the plurality of the frequency domain features, and at least two of the plurality of fluid flow models are different.
Abstract:
In some examples, the disclosure provides a method for determining a drift in clock data that is provided by a clock of a seismic sensor. The sensor is exposed to an ambient temperature that varies over time. The method includes obtaining temperature data associated with the ambient temperature as a function of time. The method also includes obtaining the clock data. The method also includes obtaining timestamp data provided by a global navigation satellite system. The method also includes determining drift data which minimizes a difference of a temporal drift in the clock data, based on the timestamp data and the temperature data. The method also includes outputting corrective data based on the determined drift data.
Abstract:
A method of identifying events includes obtaining an acoustic signal from a sensor, determining one or more frequency domain features from the acoustic signal, providing the one or more frequency domain features as inputs to a plurality of event detection models, and determining the presence of one or more events using the plurality of event detection models. The one or more frequency domain features are obtained across a frequency range of the acoustic signal, and at least two of the plurality of event detection models are different.