Abstract:
The error rate of auxiliary data embedded in media signals is decreased through variable error robustness coding. In one application, error correction coded symbols in a steganographic message that are more prone to error are repeated more than other symbols. In another application, the error robustness coding is increased or decreased in different parts of an auxiliary data message according to a measure of the expected error rate based on a model of the channel and/or the host media signal that is to carry the auxiliary data through that channel.
Abstract:
Processes and apparatus for improving the state of the art for watermarking and data protection. The disclosure includes feature-based watermarks, auto- and cross-correlation techniques for determining scaling and rotation, transitions in time based watermarking, autocorrelation watermarks for images, and dynamic content scrambling of static files.
Abstract:
An acquired (e.g., scanned) image contains an imperceptible periodic signal component (e.g., a sinusoid), decoding of which can be used to automatically determine a linear geometric relationship between the acquired image and the original image in which the signal was embedded, without having the original image available during the decoding process. This known geometric relationship allows for linear geometric properties of the acquired image, such as alignment and scaling, to be automatically matched with those of the original image so that the acquired image may be automatically oriented and scaled to the size of the original image. The embedded periodic signals produce a distinct pattern of local peak power concentrations in a spatial frequency amplitude spectrum of the acquired image. Using geometric constraint information about the embedded signals when the signals were originally embedded in the image, the locations and spatial frequencies of the signals are decoded from the image, providing a linear mapping between the peak power concentrations of the acquired and original image spatial frequency amplitude spectra. This linear mapping can be used to compute the linear geometric relationship between the two images. In an illustrated embodiment, the acquired image contains a set of sinusoidal signals that act as a grid. Decoding of the sinusoids does not require the original image, only information about the predetermined geometric relationship of the embedded sinusoids.
Abstract:
An identification code signal is impressed on a carrier to be identified (such as an electronic data signal or a physical medium) in a manner that permits the identification signal later to be discerned and the carrier thereby identified. The method and apparatus are characterized by robustness despite degradation of the encoded carrier, and by permeation of the identification signal throughout the carrier.