Abstract:
A transmission mechanism for optical scanner includes a screw bar, a first nut, a second nut, a retainer, a first spring and a second spring. The screw bar has external threads engageable with internal threads of the first and second nuts. The first nut is close to the transmission direction. The retainer is hollow and has a front and a rear wall to hold the first and second nut therebeween. The first nut makes contact with the front wall. The first spring is located between the first and second nut. The second spring has a stronger force than the first spring and is located between the second nut and the rear wall. The spring force keeps the rear side of the internal threads of the first nut make close contact with external threads of the screw bar, and the front side of the internal threads of the second nut make close contact with the external threads so that the first and second nut may be free from vibration during transmission operation.
Abstract:
A vibration inhibiting mechanism for a scanner including a base installed in a chassis of the scanner for resiliently biasing a roller support formed with a roller assembling portion on the top thereof; a roller being mounted on the roller assembling portion for abutting against a glass panel disposed on a top side of casing for receiving the chassis by an upward urging force exerted by the roller support, so as to prevent the chassis from vibrating along a direction perpendicular to the glass panel during the movement of the chassis and to prevent damage to or dislocation of the chassis during a drop test.
Abstract:
An image recording apparatus for recording an image on a sensitive material mounted on a drum by emitting light beams to the sensitive material. The apparatus includes a cylindrical drum for supporting the sensitive material mounted peripherally thereof, a drive mechanism for rotating the drum with a rotary shaft disposed on an axis of the drum, guide members formed in opposite end surfaces of the drum and extending circumferentially about the rotary shaft, a pair of counterweights movable along each of the guide members, a moving mechanism for engaging each of the counterweights and moving relative to the drum, thereby to move the counterweight along the guide member, and a fixing mechanism for fixing the counterweight to the guide member in time of image recording.
Abstract:
A vibration-proof device for an upper transparency adapter (UTA) of a scanner is provided. The vibration-proof device includes a supporter for coupling a slide rod mounted in a cover of the upper transparency adapter for an optic source carriage to be slidably coupled thereto, a positioning member for retaining in place the supporter in the cover and an elastic member interposed between the supporter and a base of the cover for providing the supporter with an upward elastic force so as to resiliently abut the optic source carriage against a glass panel attached to the cover.
Abstract:
The invention includes at least one swingable elastic locking bar mounted on the chassis of the scanner, and the end of the elastic locking bar is provided with a contact member having a low friction coefficient, and let the contact member on the elastic locking bar contact the top cover of the frame body of the scanner. Thus, the chassis may be rigidly rested on the top cover or on the glass mounted on the top cover to move, thereby providing a good scanning effect of an arbitrary angle. The swingable action of the elastic locking bar may efficiently absorb the tolerance produced during fabrication and assembly of the top cover and the bottom housing of the frame body of the scanner, thereby assuring stability of the optical travel path.
Abstract:
A rotation stabilizing device comprises a rotary member rotated around a rotating center axis; an inertia member vibrating in accordance with change of rotating speed of the rotary member; and a viscoelastic connector for detachably connecting the inertia member to the rotary member, wherein the viscoelastic connector has viscosity and elasticity so as to change form in accordance with vibration of the inertia member. The inertia member is connected to at least one of an outer side and an inner side of the rotary member at a same phase in a direction of the rotating center axis of the rotary member by the viscoelastic connector.
Abstract:
A flat bed image scanner uses a contact image sensor to scan a document. The distance between the contact image sensor and the glass window, over which the document is placed, is minimized and held constant by inserting a lubricating element between the contact image sensor and the glass window. The lubricating element may comprise two pads placed at the two ends of the contact image sensor. The lubricating element can also be integrated structurally with the contact image sensor. The material of the lubricating element can be nylon or some other kinds of plastic. The lubricating element may also comprise two rollers placed at the two ends of the contact image sensor.
Abstract:
An image forming apparatus includes a reading unit for reading an original image, and a recording unit for recording an image. A control unit is also provided which controls the relative timing between the operations of the reading unit and the recording unit. The operation of the control unit enables the apparatus to perform a reading operation in a first mode, in which the reading unit reads an original image without the recording unit performing a recording operation, in parallel with a recording operation in a second mode, in which a different original image, read by the reading unit, is recorded by the recording unit, such that vibrations caused by either the reading operation in the first mode or the recording operation in the second mode do not affect the other operation. As a result of the structure of the apparatus, an advantageous feature can be attained in which the timing of a writing operation is controlled in accordance with the movement of the reading scanner.
Abstract:
Disclosed is a reflection-mirror support structure in a raster scanner having at least one reflection mirror on a light path between a light source and a photosensitive body so that in repsonse to an image signal a beam is moved to perform scanning for every scanning line through a beam deflection means to thereby write a latent image corresponding to the image signal on the photosensitive body. The reflection-mirror support structure comprises a stopper member for restricting a lower end edge position of the reflection mirror, a support member for supporting the reflection mirror slantingly at a predetermined angle, a holder member for positioning the reflection mirror relative to the stopper and the supports and for holding the reflection mirror, and a vibration suppressing member for urging a substantially-central portion of an upper end edge of the reflection mirror against the stopper, whereby the vibration of the reflection mirror is surely suppressed while keeping the surface flatness of the reflection mirror well so that the beam scanning position on the photosensitive body is made so as not to be displaced to thereby maintain the good printing quality.
Abstract:
An optical scanning system for (i) scanning images from film transparencies or reflective copy, and for (ii) reproducing images onto film or photosensitive paper to prepare films, printing plates and the like. A paten assembly having two platens, each platen having an image area, is rotatable between positions to selectively locate one of the platens in an orientation for scanning an image area of such platen. A scanner traces scan lines across the image area in a first direction as a gantry assembly transports the scanner over the image area in a second direction. When scanning an image (as opposed to scanning to reproduce an image), photodetectors detect light either transmitted through a film containing an image or reflected from a reflective copy containing an image. The photodetector is sampled by a system computer. When scanning to reproduce an image, a film is loaded onto a platen and the scanner scans in raster fashion over the film. A light source on the scanner is modulated during the scanning to reproduce an image onto the film. To load the film the scanner is automatically moved out of the platen's path of rotation, a sheet of film is automatically raised to the platen which by vacuum force holds the film to the platen, and the platen is rotated to bring the film into a position to be scanned.