Abstract:
A dosimeter for ionizing radiation is of oblong shape. It comprises a gas-filled measuring chamber surrounded by a casing. THe casing is formed of two oblong frames of insulating material that are substantially similar in shape. The two frames are mounted on each other in a gas-tight manner. The anode wires are situated in the plane of separation between the frames and are secured by the frames in contact with each other. At least one of the frames is provided with a cathode over its whole length and parallel to the plane in which the anode wires are situated. Along the edge of the cathode extends a guard electrode which surrounds the cathode with a certain gap. The dosimeter is made of materials that are transparant to the ionizing radiation. It can be used particularly in slit radiography equipment in which the slitwidth can be controlled locally and independently along the length of the slit.
Abstract:
A small enclosed chamber with an electrostatically charged electret attached to the inner chamber wall. A filtered hole in the chamber permits radon or other radioactive gas to enter by diffusion. Positive or negative ions (depending on the polarity of the electret charge) formed in the chamber air by the decay of the radioactive gas move to and collect on the electret surface by virtue of its electrostatic attraction to ions of opposite polarity. These ions accumulate and cause a measurable reduction in the surface voltage of the electret which reduction is proportional to the time integrated concentration of the radioactive gas in the chamber. The electret surface voltage of the reduction value is used to calculate the average concentration of the radioactive gas during the exposure period. The electret thickness and chamber volume can both be increased to increase the sensitivity of the invention to radioactive gases such as radon, tritium or carbon-14 dioxide or such other radioactive gases.
Abstract:
A kinestatic charge detector having a chamber, which includes a front wall through which propagating energy enters and first and second electrodes disposed opposite to each other on walls substantially perpendicular to the front wall, also includes a device disposed on the front wall for maintaining the electric field generated by the electrode constant and uniform close to the front wall. The device includes a resistive wire zig-zagged across the front wall and connected between the electrodes.
Abstract:
An electrode plate arranging jig according to the invention which allows to arrange electrode plates with high precision and facilitates the work of constructing an array of electrode plates, characterized in that a member with a plurality of grooves cut at pitches at which the electrodes are arranged has a structure of two superimposed members (11, 12) deviatable from each other in the direction in which the plurality of grooves are arranged, and has grooves (13, 14) having a width which has enough leeway compared to the thickness of the electrode plates.
Abstract:
A wide range radiation dose rate meter for civil defense use, including a iger-Mueller tube used in a continuous counting mode and for measuring dose rates from the natural background to about 30. rads/hr., with an ion chamber arranged to measure higher dose rates up to 10,000 rads/hr. The instrument has a sample and record capability in which the selected radiation detector will have its output connected to a selected storage capacitor for a precise interval of time determined by a timing circuit and the storage capacitor will accumulate and hold a voltage proportional to the dose rate, which can be read by means of an electrometer at a later time. The instrument has a self contained hand cranked power supply and all components are selected for long shelf life.
Abstract:
To enable an ionization chamber used for measuring the intensity of a beam of ionizing radiation, for example an electron beam produced by a linear accelerator and used for radiotherapy, both to give an output signal which is independent of ambient pressure and temperature and to present a low weight of scattering material per unit area to the beam, the chamber is of flexible construction so that the volume of gas in it adapts to ambient pressure and temperature, and such that the weight of gas in the active region between the electrodes per unit area remains substantially constant. Suitably, the electrodes are conductive layers on flexible plastics sheets, an outer annular portion of one sheet providing a flexible connection between two opposed chamber wall portions which remain substantially planar and parallel; the proportional change (.DELTA.V.sub.1 /V.sub.1) in a volume bounded by the opposed wall portions and including the active region equals the proportional change (.DELTA.V.sub.2 /V.sub.2) in the remainder (V.sub.2) of the internal volume.
Abstract:
A beta radiation particle detector having a housing that is substantially impervious to beta radiation particles and which surroundingly encompasses an ionization chamber which is defined by electrically conductive walls is disclosed. The walls terminate in an edge which defines an opening into the ionization chamber with the opening being covered by a beta radiation pervious electrically conductive window that entraps, within the ionization chamber, a quantity of gaseous molecules which are adapted to ionize upon impact with a beta radiation particle. An electrode is disposed within the ionization chamber and has a generally shallow concave surface having a width which is substantially greater than its depth and which faces the electrically conductive window. The concave surface of the electrode terminates in a generally annular rim that is disposed substantially adjacent to the edge of the walls so that the rim is configured to substantially conform to the electrically conductive walls so as to define a beta radiation sensitive volume generally located within the ionization chamber between the beta radiation pervious electrically conductive window and the concave surface of the electrode. A battery, for establishing an electrical potential between the electrode and the electrically conductive walls and window, is adapted, upon creation of an ion within the beta radiation sensitive volume of the ionization chamber to cause an electric current to flow within a circuit between the walls/window and the electrode. A meter for detecting and measuring the flow of electric current in the circuit and displaying the amount of radiation dose rate present is included.
Abstract:
A multi-cell radiation detector constructed such that a first group of electrodes to which is applied high voltage and a second group of electrodes to which are connected signal leads are alternately arranged inside a vessel containing ionizable gas enclosed therein. The first group electrodes are provided with terminals to which are connected leads for introducing high voltage from the exterior, while the second group electrodes are provided with terminals to which are connected leads for leading out signal outputs to the exterior. These leads and terminals are all disposed at positions offset from traveling path of the radiation so as to reduce the volume of the space under the weak electric field behind the electrode section.
Abstract:
A pressure vessel of an X-ray detector, in which the contamination and leakage of xenon gas contained in the detector is prevented. The pressure vessel of the invention comprises a container of a curved pillar shape with a window through which the X-ray passes. The container is made of a metal, and the window faces inward of the curvature of the container. A carbon fiber-reinforced plastic sheet is fixed to the inner wall of the periphery of the window to cover the window. An elastic insulation sheet is attached to the inside of the carbon fiber-reinforced plastic sheet so as to cover the window. A metal foil is attached to the inside of the elastic insulation sheet so as to cover the window.
Abstract:
Ionization chamber making it possible to measure high energy gamma radiation, wherein it comprises a tight cylindrical enclosure containing an ionizable gas, and several coaxial cylindrical electrodes, which are insulated from one another, and are positioned within the enclosure and are raised to different potentials, so as to produce an electrical field in the enclosure, whereby the innermost electrode is formed by a solid cylinder, the outermost electrode is formed by a solid tube and the intermediate electrodes are formed by a perforated tube.