Abstract:
A method for sending uplink scheduling grant signaling and a base station, applied in an Advanced Long Term Evolution (LTE-A) system, the method includes: a base station, according to a number of clusters occupied with non-consecutive resource allocation by a Physical Uplink Shared Channel (PUSCH) of a scheduled user equipment in a component carrier, configuring at least one uplink scheduling grant signaling for the user equipment, wherein each uplink scheduling grant signaling indicates an allocation of resource for one or two clusters occupied by the PUSCH; and the base station allocating a Physical Downlink Control Channel (PDCCH) for each uplink scheduling grant signaling, and sending the uplink scheduling grant signaling to the user equipment. The flexibility of the resource allocation in the case of multiple clusters is enhanced, meanwhile the reliability of transmission of the scheduling grant signaling is ensured.
Abstract:
The invention discloses a method for generating a group identifier of the random access response message. The group identifier is determined according to the serial number of the subframe in which the random access time slot of random access preamble message transmitted by the terminal lies and the serial number of the random access channel in which the random access time slot lies. A random access method and a random access response method in a cellular radio communication system are also provided. Using the method of the present invention, the terminal needs not acquire the absolute system time of the cellular system in which the random access time slot lies, and can access the cellular radio communication system rapidly and accurately.
Abstract:
The invention discloses a method for processing power headroom and a terminal thereof, wherein the method comprises: when transmitting a physical uplink shared channel (PUSCH) and/or a physical uplink control channel (PUCCH) on subframe i and component carrier group j, the terminal measures power headroom on the subframe i and the component carrier group j; the terminal reports the power headroom to the base station and indicates the type of the reported power headroom when reporting. The invention specifically indicates the type to which the power headroom belongs by reporting the type while reporting the power headroom, thereby avoiding confusion.
Abstract:
The present invention discloses a method and terminal for selecting a random access resource, the method includes: the terminal receives the physical downlink control channel signaling sent by a system; the terminal determines the first subframe which meets a condition A and contains a random access resource from the subsequent subframes of the subframe receiving the physical downlink control channel signaling, the condition A is that the time difference between the first subframe and the subframe receiving the physical downlink control channel signaling is greater than or equal to k, k is the time delay defined by the physical layer of the terminal; and the terminal starts a selection on the subframe containing a random access source from the first subframe.
Abstract:
The present invention discloses a method for configuring and indicating physical random access channel parameter in a time division duplex system, suitable for the long term evolution, system, including: the same PRACH configuration set is stored in a base station and a terminal respectively; when performing a PRACH configuration, the terminal inquires the PRACH configuration set according to configuration information to obtain a configuration parameter, and/or the terminal computes to obtain the configuration parameter according to a system parameter. Set by using the method provided by the present invention, the PRACH configuration set can provide enough density types for various PRACH formats in order to meet the requirements of different system loads, and meanwhile can provide enough version types for each combination of format and density, decrease the processing load of the base station, and reduce the inter-cell interference.
Abstract:
Methods for producing drug-containing bioabsorbable fibers. Also disclosed are methods for treating diseases using a bioabsorbable drug delivery device.
Abstract:
In an electro-optic device, a stack structure including a first silicon layer of a first conductivity type and a second silicon layer of a second conductivity type has a rib waveguide shape so as to form an optical confinement area, and a slab portion of a rib waveguide includes an area to which a metal electrode is connected. The slab portion in the area to which the metal electrode is connected is thicker than a surrounding slab portion. The area to which the metal electrode is connected is set so that a range of a distance from the rib waveguide to the area to which the metal electrode is connected is such that when the distance is changed, an effective refractive index of the rib waveguide in a zeroth-order mode does not change.
Abstract:
A transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. Another transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a cyclic prefix and a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. The methods can avoid the interference of the preamble to the data of the uplink subframe, and can improve the coverage area of the random access channel and the work efficiency of the time division duplex system.
Abstract:
The method for controlling signal transmission includes: determining the first reference variable according to the number of transition points from downlink to uplink in a wireless frame of the system and the system frame number (S502); determining the second reference variable according to the number of transition points from downlink to uplink in a wireless frame and the time slot number (S504); determining the third reference variable according to the sub-frame offset of the signal (S506); and determining signal transmission times according to the first reference variable, the second reference variable and the third reference variable, so as to control the signal transmission (S508).
Abstract:
A configuration method for a sounding reference signal in a Long Term Evolution Advanced (LTE-A) system is disclosed in the present invention. The method includes: an eNB triggering one or multiple User Equipment (UE) to transmit an aperiodic Sounding Reference Signal (SRS) on one or multiple uplink subframes through a downlink control signaling. An eNB in an LTE-A system is also disclosed in the present invention. The eNB includes: a transmission module, configured to: trigger one or multiple UE to transmit an aperiodic SRS on one or multiple uplink subframes through a downlink control signaling, so as to make the UE use non-periodic SRS resources to transmit the non-periodic SRS on the uplink subframes according to the triggering of the eNB after receiving the downlink control signaling sent by the eNB. User equipment in an LTE-A system is also disclosed.