Abstract:
Various implementations described herein are directed to methods for processing seismic data, including estimating a spectral noise power of multi-measurement seismic data received from a multi-dimensional seismic sensor array having multiple seismic sensors. The methods may include receiving a shot record of multi-measurement seismic data in time-domain, partitioning the shot record into overlapping time-space windows, and computing a frequency-domain spectrum for each time-space window. The methods may include computing a signal presence probability for each time-space window using the frequency-domain spectrum and prior probabilities of signal presence and absence for each time-space window. The methods may include iteratively updating a collective spectral noise power by recursively estimating the spectral noise power of a current time-space window based on the frequency spectrum for the current time-space window, the signal presence probability computed for the current time-space window, and a previously estimated spectral noise power of a previous time-space window.
Abstract:
An embodiment of the disclosed invention includes a method for attenuating noise during acquisition of marine seismic date. The method includes placing a seismic streamer in a body of water. The seismic streamer includes a streamer body having a length and a channel, a seismic sensor disposed within the channel, and a gel disposed within the channel. The gel has a complex viscosity of at least 50 Pascals and includes a concentration of a polymer between the range of about 5% and about 25% by weight. The method also includes placing a source in the body of water. The seismic streamer and the source are towed through the body of water and the source is fired while being towed through the body of water. Data is collected from the seismic streamer as it is towed through the body of water.
Abstract:
Computing systems and methods to producing a reverse time migration model dip-guided image using processed vertical seismic profile data are provided. In one embodiment, vertical seismic profile data for a subsurface geological formation is obtained. One or more dip estimates corresponding to the subsurface geological formation are also obtained. One or more model dip-guided reverse time migration imaging conditions are determined and applied to the obtained vertical seismic profile data to produce the processed vertical seismic profile data.
Abstract:
Described herein are implementations of various technologies for a method for processing seismic data corresponding to a region of interest. The method may receive the seismic data. The method may separate the received seismic data into refraction packets and reflection packets. The method may receive a model for the region of interest. The method may update a first portion of the received model using the refraction packets with refraction traveltime tomography. The method may use the updated model to facilitate hydrocarbon exploration or production.
Abstract:
Various implementations directed to a foul release material for use with fairings. In one implementation, a seismic cable for use in a seismic acquisition system may include a fairing configured to engage with an outer diameter of the seismic cable. The seismic cable may also include a foul release material applied to an outer surface of the fairing, where the foul release material is configured to minimize the formation of biofouling on the outer surface of the fairing.
Abstract:
An objective function is based on covariance of differences in predicted data over multiple sets of candidate model parameterizations that characterize a target structure. A computation is performed with respect to the objective function to produce an output. An action selected from the following can be performed based on the output of the computation: selecting at least one design parameter relating to performing a survey acquisition that is one of an active source survey acquisition and a non-seismic passive acquisition, and selecting a data processing strategy.
Abstract:
A computer-implemented method of determining a search expression describing a feature of interest in a set of data points distributed throughout a geological object is provided. Each data point contains a value for a geological attribute at that point. The search expression has a plurality of entries. The method including the steps of: (i) displaying the geological object using display codings corresponding to value subranges for the geological attribute such that all data points which have values for the geological attribute falling within a given value subrange are displayed with the same coding; (ii) selecting a plurality of data points of the feature of interest; and (iii) allocating value characters to entries of the search expression, the value characters corresponding to the value subranges for the geological attribute of the selected data points.
Abstract:
The technologies described herein include systems and methods for performing a first seismic survey and performing a second seismic survey after a predetermined amount of time has lapsed between the first seismic survey and the second seismic survey. The shot times and the shot positions of the second seismic survey may be substantially the same as the shot times and the shot positions of the first seismic survey. After performing the seismic surveys, seismic data generated by the first seismic survey may be processed to generate a first image, and seismic data generated by the second seismic survey may be processed to generate a second image. After generating the first and second images, a difference between the first image and the second image may be computed to generate a time lapse difference image.
Abstract:
Methods and apparatuses for processing seismic data to generate images or determine properties of an interior section of the Earth. The seismic data is processed to filter coherent noise such as ground roll noise from seismic survey data. The noise is attenuated using 3D and/or 2D fan filters, which may have combined low-pass and band-pass filters derived from signal decomposition. The filters are designed with selected operator length, velocity bands of signals and noises and frequency range for a primary trace and adjacent traces within the operator length. The data is decomposed with the filters into signals and noises, and the noises are then filtered from the decomposed data. The process may be repeated for various frequencies and traces within the seismic data. The methods may be used for surveys that have either regular or irregular seismic receiver or seismic source positions.
Abstract:
Translational data acquired by at least one seismic sensor is received. Gradient sensor data acquired by at least one gradient sensor is received. Estimated translational data at a position away from at least one position of the at least one seismic sensor is computed, where the computing is based on the gradient sensor data and the translational data.