Abstract:
Methods of and systems for forming an image of a subterranean region of interest are disclosed. The method includes obtaining an observed seismic dataset and a seismic velocity model for the subterranean region of interest and generating a simulated seismic dataset based on the seismic velocity model and the source and receiver geometry of the observed seismic dataset. The method also includes forming a plurality of time-windowed trace pairs from the simulated and the observed seismic datasets, and forming an objective function based on a penalty function and a cross-correlation between the members of each pair. The method further includes determining a seismic velocity increment based on the extremum of the objective function and forming an updated seismic velocity model by combining the seismic velocity increment and the seismic velocity model, and forming the image of the subterranean region of interest based on the updated seismic velocity model.
Abstract:
Data of vertical seismic profile in the geological formation are recorded and at least one estimation of a geological formation local model dip is performed, also at least one dynamic dip estimation is performed for at least one wavetype excited by sources and registered by receivers using directionally-based vectors. A difference between the local model dip estimation and the dynamic dip estimation is calculated. Based on the calculated difference between the local model dip estimation and the dynamic dip estimation at least one weighting coefficient is calculated. The calculated at least one weighting coefficient is used for determining at least one formulae for imaging with the use of elastic waves at reverse time migration conditions taking into account a dip angle of the geological formation. The determined at least one formulae is applied to the obtained vertical seismic profile data and at least one image of the geological formation is produced.
Abstract:
Computer systems and methods are provided for seismic wavefield processing, including time domain reconstructed full wavefield inversion (TDRFWI) of seismic survey data. Suitable methods include forward propagating a source signal based on a model of a subsurface region, generating a residual based on the forward-propagated wavefield in comparison to field data, back propagating the residual to generate a reconstructed source perturbation, and adding the reconstructed source perturbation to the source signal to generate a reconstructed source wavefield. The reconstructed source perturbation can be forward propagated to generate a reconstructed wavefield perturbation, and added to the reconstructed wavefield perturbation to reconstruct the wavefield. The propagations can be performed in the time domain, and the model can be updated based on the reconstructed wavefield and reconstructed source perturbation to generate high fidelity subsurface images.
Abstract:
Computing device, computer instructions and method for up-down separation of seismic data. The method includes receiving the seismic data, which includes hydrophone data and particle motion data; performing a first up-down separation, which is independent of a ghost model, using as input the hydrophone data and the particle motion data, to obtain first up-down separated data; performing a second up-down separation by using as input a combination of (i) the hydrophone data and/or the particle motion data and (ii) the first up-down separated data, wherein an output of the second up-down separation is second up-down separated data; and generating an image of the subsurface based on the second up-down separated data.
Abstract:
Computing systems and methods for improving imaging of collected data are disclosed. In one embodiment, a first wavefield is propagated to obtain a first wavefield history; the first wavefield is again propagated to obtain a second wavefield history, wherein the propagation includes integration of one or more Q-effects; a first attenuated traveltime history is estimated based at least in part on the first and second wavefield histories; a first Q-model filter is calculated based at least in part on the first estimated attenuated traveltime; and a first adjusted wavefield is generated based at least in part on application of the first Q-model filter to the first wavefield. In some embodiments, an image is generated based at least on a first adjusted wavefield and a second wavefield.
Abstract:
Systems and methods for generating a three-dimensional image of a proppant-filled hydraulically-induced fracture in a geologic formation are provided. The image may be generated by capturing electromagnetic fields generated or scattered by the proppant-filled fracture, removing dispersion and/or an attenuation effects from the captured electromagnetic fields, and generating the image based on the dispersion and/or attenuation corrected fields. Removing the dispersion and/or attenuation effects may include back propagating the captured electromagnetic fields in the time domain to a source location. The image may be generated based on locations at which the back propagated fields constructively interfere or may be generated based on a model of the fracture defined using the back propagated fields.
Abstract:
Systems and methods for generating a three-dimensional image of a proppant-filled hydraulically-induced fracture in a geologic formation are provided. The image may be generated by capturing electromagnetic fields generated or scattered by the proppant-filled fracture, removing dispersion and/or an attenuation effects from the captured electromagnetic fields, and generating the image based on the dispersion and/or attenuation corrected fields. Removing the dispersion and/or attenuation effects may include back propagating the captured electromagnetic fields in the time domain to a source location. The image may be generated based on locations at which the back propagated fields constructively interfere or may be generated based on a model of the fracture defined using the back propagated fields.
Abstract:
A method for processing seismic data. The method includes predicting seismic data according to an earth model representing seismic properties of subterranean formations in the earth, determining a difference between seismic data acquired from one or more seismic receivers and the predicted seismic data, projecting the difference into a model space in traveltime, and updating the earth model according to the projected difference. As a result, the updated earth model more accurately represents the seismic properties of subterranean formations in the earth.
Abstract:
Computing systems and methods to producing a reverse time migration model dip-guided image using processed vertical seismic profile data are provided. In one embodiment, vertical seismic profile data for a subsurface geological formation is obtained. One or more dip estimates corresponding to the subsurface geological formation are also obtained. One or more model dip-guided reverse time migration imaging conditions are determined and applied to the obtained vertical seismic profile data to produce the processed vertical seismic profile data.
Abstract:
A device, medium and method for processing seismic data associated with a subsurface of the earth. The method includes a step of receiving seismic data (d) recorded with one or more seismic receivers; a step of processing the seismic data (d) with a first processing algorithm to obtain imaged seismic data (D); a step of constructing wave-fields (W) corresponding to the imaged seismic data (D) by solving a given wave equation, wherein the wave-fields (W) have an added axis (τ) which maps back spectral properties of the imaged seismic data to its pre-imaging state; and a step of processing the wave-fields (W) along the axis (τ) with a second processing algorithm.