Abstract:
A circuit and method for improving EMI noise performance in a bridgeless PFC boost converter. Such a converter comprises a boost inductor having a first end connected to a first AC input terminal and a second end connected to a first junction defined between the anode of a first diode and a first terminal of a first switch; a second terminal of the first switch connected to a common line; a parallel circuit of a capacitance and a load connected between the cathode of the first diode and the common line; a series circuit of a second diode and a second switch connected between the cathode of the first diode and the common line; and a second AC input terminal connected to a second junction defined between the anode of the second diode and the second switch. High-frequency EMI noise is bypassed by placing a first filter capacitor between the first AC terminal and the common line. A second boost inductor may be connected between the second AC input terminal and the second junction, and a second filter capacitor may be connected between the second AC terminal and the common line. The first and/or second filter capacitor has a lower impedance in a high frequency range than the corresponding first or second boost inductor. Preferably the first and second capacitors have substantially the same capacitance.
Abstract:
An image processing unit executes an image process on a target image based on process-setting contents, and generates a processed image. An area extracting unit compares the processed image with the target image, and extracts a partial area of a predetermined size showing a notable effect of the image process executed on the target image, as a checking area. A checking-image display unit displays the processed image corresponding to the extracted checking area on a display unit, as a checking image for checking the process-setting contents of the image process.
Abstract:
An image display device includes an analyzing section that analyzes the types of images contained in input image data, a dividing section that divides the image data into blocks based on the types of images, a display controlling section that displays the image data divided into the blocks on a touch panel, a specifying section that specifies a block as selected or non-selected block, and an editing section that edit a selected block in response to an edit request. The display controlling section displays an image edited by the editing section on a display screen.
Abstract:
A composition suitable for copper chemical-mechanical polishing (CMP) comprises an abrasive powder, such as a silica and/or alumina abrasive, in a liquid carrier. The composition has a transition metal content of less than about 5 parts per million (ppm), preferably less than about 2 ppm. Preferably the composition contains less than about 2 ppm of yttrium, zirconium, and/or iron. The CMP compositions, when combined with hydrogen peroxide, provide CMP slurries for copper CMP that have improved pot life by ameliorating hydrogen peroxide degradation in slurries.
Abstract:
Metal alloy heatsink films for magnetic recording media are disclosed. The metal alloy heatsink films possess both high thermal conductivity and improved mechanical properties such as relatively high hardness. The metal alloy heatsink films also have controlled microstructures which are compatible with subsequently deposited crystalline magnetic recording layers. The films may comprise single phase CuZr or AgPd alloys having a selected crystal structure and orientation. The combination of high thermal conductivity, good mechanical properties and controlled microstructures makes the metal alloy heatsink films suitable for various applications including heat assisted magnetic recording systems.
Abstract:
A thin film structure that includes a hard magnetic recording layer, a soft magnetic underlayer and an intermediate layer between the hard magnetic recording layer and the soft magnetic underlayer is disclosed. The intermediate layer comprises a soft magnetic interlayer, and a non-magnetic interlayer between the soft magnetic interlayer and the hard magnetic recording layer. The thin film structure can be a recording medium. The soft magnetic interlayer can be crystalline.
Abstract:
An apparatus comprises a substrate, a soft underlayer on the substrate, an interlayer on the soft underlayer, a magnetic layer on the interlayer, wherein the magnetic layer has a granular structure comprising magnetic grains separated by non-magnetic grain boundaries, and an exchange enhancement layer formed on the surface of the granular magnetic layer.
Abstract:
One embodiment of the present invention enables a user to utilize a personalized video recorder (PVR) to order and receive specific television shows that are unavailable from his or her television content provider. Specifically, the PVR is coupled to the Internet such that it can receive an electronic programming guide (EPG) containing worldwide television programming from an EPG server computer. The PVR user utilizes the EPG to request delivery of a specific television show that is typically unavailable to him or her. Upon reception of the request, the EPG server computer locates via the Internet a PVR situated within a broadcast region of the requested television show. Next, the EPG server computer programs the PVR to record the requested television show when it is broadcast. Once the PVR records the television show, it is transmitted to the EPG server computer which transmits it to the requesting PVR.
Abstract:
FIG. 1 is a top perspective view of a ceiling fan light, showing my new design; FIG. 2 is a bottom perspective view thereof; FIG. 3 is a front view thereof; FIG. 4 is a rear view thereof; FIG. 5 is a left side view thereof; FIG. 6 is a right side view thereof; FIG. 7 is a top view thereof; and, FIG. 8 is a bottom view thereof. The broken lines in the drawings illustrate the portions of the ceiling fan light, which form no part of the claimed design.
Abstract:
A method identifies electric load types of a plurality of different electric loads. The method includes providing a support vector machine load feature database of a plurality of different electric load types; sensing a voltage signal and a current signal for each of the different electric loads; determining a load feature vector including at least six steady-state features with a processor from the sensed voltage signal and the sensed current signal; and identifying one of the different electric load types by relating the load feature vector including the at least six steady-state features to the support vector machine load feature database.