Abstract:
A system and method of monitoring received instrument landing system (ILS) signals onboard an aircraft includes performing a pre-approach sampling of the received ILS signals to thereby generate pre-approach phase ILS data. A statistical approach course of the aircraft is determined based at least in part on the pre-approach phase ILS data. A determination is made as to when the aircraft is below a predetermined activation altitude and, when it is, approach sampling of the received ILS signals is performed to generate approach phase ILS data. The approach phase ILS data is compared to the statistical approach course to determine a course deviation. An alert signal is selectively generated when the course deviation exceeds a predetermined magnitude.
Abstract:
A system and method of monitoring received instrument landing system (ILS) signals onboard an aircraft includes performing a pre-approach sampling of the received ILS signals to thereby generate pre-approach phase ILS data. A statistical approach course of the aircraft is determined based at least in part on the pre-approach phase ILS data. A determination is made as to when the aircraft is below a predetermined activation altitude and, when it is, approach sampling of the received ILS signals is performed to generate approach phase ILS data. The approach phase ILS data is compared to the statistical approach course to determine a course deviation. An alert signal is selectively generated when the course deviation exceeds a predetermined magnitude.
Abstract:
A system and method are provided for integrating and displaying the collective cue and the pitch and roll cue of a helicopter display with a flight path marker providing a moving reference showing the aircraft flight path.
Abstract:
A system and method displays an intercept point on a synthetic vision display that conforms to the flight path intercepting the terrain when the nose of the helicopter is pitched up during landing. A steep approach during landing may be detected by an evaluation of, for example, attitude of the helicopter, rate of descent, and airspeed.
Abstract:
A flight deck display system for an aircraft includes a processor architecture configured to receive aircraft instrument data, waypoint restriction information, and position data for the aircraft and, based upon the received data, generate image rendering display commands. The system also includes a display element configured to receive the image rendering display commands and, in response thereto, to render a display that includes a perspective view of terrain and at least one waypoint marker corresponding to an approaching waypoint. The waypoint marker includes visually distinguishable characteristics that convey waypoint restriction information (e.g., altitude or airspeed constraint information that governs the waypoint).