Abstract:
In one embodiment, a method for operating a camera included in a touch input device including a touch screen is disclosed. A processor determines a capacitance pattern for a varying capacitance throughout the touch screen when the touch screen is underwater and no touch input occurs. The processor resets a varying reference capacitance for determining whether a touch input by an object occurs or not, the varying reference capacitance being reset based on the determined capacitance pattern when the touch screen is underwater and no touch input occurs. The touch screen receives a touch pressure by the object underwater. Operation of the camera is controlled according to the touch pressure to the touch screen.
Abstract:
A method for underwater operating a camera built in a touch input device including a touch screen, a processor, and a controller may be provided that includes: performing a first drive mode in which a touch position is detected underwater by a capacitance change amount due to a touch pressure; and controlling operation of the camera underwater according to a touch on the touch screen by an object.
Abstract:
A virtual touch pad operation method includes: determining whether or not a hovering input or a touch input to a touch screen meets a predetermined condition; entering a virtual touch pad mode when the hovering input or the touch input meets the predetermined condition; and operating a virtual touch pad. A terminal includes: a touch screen; and a controller which controls a hovering input or a touch input to the touch screen and displays a virtual touch pad on a portion of the touch screen by the hovering input, or the terminal includes: a touch screen, and a controller which distinguishes a touch input to a virtual touch pad in accordance with a pressure magnitude or area of the touch and controls the operation of the virtual touch pad. The virtual touch pad is formed on a portion of the touch screen by the touch input satisfying a predetermined condition.
Abstract:
In one embodiment, a touch input device capable of detecting a pressure of a touch on a touch surface includes a display panel and an electrode disposed under the display panel. An electrical characteristic detected at the electrode is changed by the bending of the display panel. A magnitude of the pressure applied to the touch surface is detected according to the change amount of the electrical characteristic. The display panel includes a first area and a second area. A pressure detection sensitivity of the first area is higher than a pressure detection sensitivity of the second area. When the first area and the second are bent to the same degree, a change amount of the electrical characteristic detected when a pressure is applied to the second area is greater than a change amount of the electrical characteristic detected when a pressure is applied to the first area.
Abstract:
In one embodiment, the invention can be a touch input device capable of unlocking a passcode accordance with a touch pressure. The device can include a touch screen which displays a passcode input window; a controller which generates a first control signal as to whether or not a touch on the passcode input window matches a predetermined passcode; and a memory which stores the predetermined passcode. The passcode input window can include a plurality of nodes which are disposed in different positions. The number of touched nodes among the plurality of nodes, the order of the touched nodes among the plurality of nodes, and a pressure level of the touch on each of the touched nodes among the plurality of nodes can be set as the predetermined passcode. Further, the pressure level of the touch can he classified into at least two levels.
Abstract:
An electrode sheet including an electrode layer and a support layer may be provided. The electrode layer includes a first electrode and a second electrode. The electrode sheet is used to detect a capacitance change between the first electrode and the second electrode, which is changed according to a relative distance change between the electrode layer and a reference potential layer disposed apart from the electrode sheet. The support layer is made of a material which is bent when a pressure is applied thereto and which is restored to its original state when the pressure is released therefrom.
Abstract:
A touch input device performing a feedback according to a touch level may be provided that includes; a touch screen which displays a passcode input window; a controller which generates a first control signal as to whether or not a touch on the passcode input window matches a predetermined passcode, and determines a touch level among a plurality of touch levels by using at least one of a pressure magnitude, area and time period of the touch; and a memory which stores the predetermined passcode. The touch level is set to the predetermined passcode.
Abstract:
A touch input device capable of detecting a pressure of a touch on a touch surface may be provided that includes: a display panel; and an electrode disposed under the display panel. When a pressure is applied to the touch surface, a distance between the electrode and a reference potential layer is changed. A capacitance which is detected at the electrode is changed according to the distance change. The display panel includes a first area and a second area. Under a same distance change condition, a capacitance change amount detected at the electrode disposed under the second area is greater than a capacitance change amount detected at the electrode disposed under the first area.
Abstract:
A touch panel control device may be provided that includes: a touch panel which generates at least one touch signal in response to a touch of an object; a displayer; and a controller which performs a first touch action mode in which the change of the touch position of the object is displayed on the displayer by a line in response to the object which has touched the touch panel, and performs a second touch action mode in which, in response to the position change of the object which corresponds to the position of the line displayed on the displayer, it is to carry out at least one of the removal of at least a portion of the line displayed on the displayer and the change of the color coordinate of the line. Also, a method for controlling the touch panel may be also provided.
Abstract:
Disclosed is a tunable capacitor. The tunable capacitor according to a first embodiment of the present invention includes: a first capacitor; and a switching transistor which switches on/off the connection of the first capacitor between the first terminal and the second terminal, wherein an on/off operation of the switching transistor is performed by a high signal H and a low signal L. The tunable capacitor according to a second embodiment of the present invention includes: a first capacitor; and a switching transistor which switches on/off the connection of the first capacitor between the first terminal and the second terminal, wherein an on/off operation of the switching transistor is performed by a high signal H and a low signal L, and wherein the tunable capacitor is integrated on one semiconductor die or on one module.