Abstract:
A method and a related system (IMA) for reconstructing an image of an electron density in a subject PAT. An x-ray radiation imager is used to expose the subject PAT to radiation to receive projection data. The reconstruction method combines projection data from two channels, namely Compton scatter based attenuation data pC and phase shift data pdφ.
Abstract:
An image reconstruction apparatus and related method. The amount of out-field-of view material for a CT scanner (IMA) with a given field of view (FoV) in a bore (B) is established. Based on the measurement, a hybrid-image reconstructor (RECONX) is configured to switch between different reconstruction algorithms.
Abstract:
The present invention relates to an image processing apparatus for filtering an image. Said apparatus comprises an image input (3) for obtaining a first and a second image of the same object, the first and second images comprising a plurality of voxels and being interrelated by a noise covariance, each voxel having a voxel value including a signal value and a noise value. A joint bilateral filter (3) is provided for filtering the first image, wherein a first voxel of the first image is filtered by a filter function including a relative voxel-specific weight, said weight including a likelihood of obtaining the voxel values of said first voxel and a second voxel in the first image and of a first voxel and a second voxel in the second image, assuming that the signal value of said first voxel of the first image is identical to the signal value of a second voxel of the first image and that the signal value of the first voxel of the second image is identical to the signal value of a second voxel of the second image. Said filtered image is provided at an image output (4).
Abstract:
A phase contrast X-ray imaging system of an object includes an X-ray source, an X-ray detector arrangement, and a grating arrangement with a phase-grating structure and an analyzer-grating structure. The X-ray detector arrangement includes at least eight line-detector units parallel to each other in a first direction, the line-detector units extending linearly in a direction perpendicular to the first direction. The phase-grating structure has a number of linear phase-gratings having a first part with first phase-gratings with slits in the first direction, and a second part with second phase-gratings with slits in a second direction different than the first direction. The analyzer-grating structure has a number of linear analyzer-gratings having a first part with first analyzer-gratings with slits in the first direction, and a second part with second analyzer-gratings with slits in the second direction.
Abstract:
The present invention relates to phase contrast X-ray imaging of an object. In order to provide phase contrast information in more than one direction, an X-ray imaging system is provided that comprises an X-ray source (12), an X-ray detector arrangement (16), and a grating arrangement (18) with a phase-grating structure (46) and an analyser-grating structure (48). The X-ray detector arrangement comprises at least eight line-detector units (40) parallel to each other in a first direction (42), the line-detector units extending linearly in a direction (44) perpendicular to the first direction. The X-ray source, the X-ray detector arrangement and the grating arrangement are adapted to perform an acquisition movement in relation to an object in a scanning direction parallel to the first direction. The phase-grating structure has a number of linear phase-gratings, each of which is arranged in fixed association with an assigned line of the at least eight line-detector units; a first part as first phase-gratings with slits in the first direction, and a second part as second phase-gratings with slits in a second direction different to the first direction. The analyser-grating structure has a number of linear analyser-gratings, each of which is arranged in fixed association with an assigned line of the at least eight line-detector units; a first part as first analyser-gratings with slits in the first direction, and a second part as second analyser-gratings with slits in the second direction. At least four adjacent lines of the line-detector units are associated with the first phase-gratings and the first analyser-gratings and at least four adjacent lines of the line-detector units are associated with the second phase-gratings and the second analyser-gratings. The grating arrangement may comprise a source-grating structure arranged between the X-ray source and the phase-grating structure, to provide sufficient coherence to the X-ray beam passing the source-grating structure, so that after passing the phase-grating structure, the interference can be observed at the location of the analyser-grating structure.
Abstract:
A processing component (122) processes images based on an iterative reconstruction algorithm with regularization and/or de-noising algorithm. The processing component includes a set point determiner (224) that determines a quality set point (216) between predetermined lower and upper quality bounds (226) based on a quality variable (228) indicative of an image quality of interest. The processing component further includes a comparator (214) that compares, each processing iteration, a quality metric of a current generated image with the quality set point and generates a difference value indicative of a difference between the quality metric and the quality set point. The processing component further includes a regularization factor updater (220) that generates an updated regularization factor for a next processing iteration based on a current value (222) of the regularization factor and at least the quality metric in response to the difference value indicating that the quality metric is outside of a predetermined range about the quality set point.