Abstract:
A large relative aperture telephoto lens system comprising a first converging lens group consisting of four positive, positive, negative and positive lens components, a diverging lens group consisting of two negative cemented doublets, and a second converging lens group consisting of a positive lens component and a cemented doublet composed of a negative lens element and a positive lens element.Said lens system is so adapted as to perform focusing and correction of aberrations by displacing the two negative lens components in said diverging lens group and said second lens group as a whole independently along the optical axis while changing relative airspaces, maintains high performance within a range from infinity to short distances and assures high operability for focusing.
Abstract:
To provide an image forming optical system that can achieve good correction of chromatic aberration, which is seriously needed particularly when the zoom ratio is high, while achieving slimness and a high zoom ratio and to provide an electronic image pickup apparatus equipped with such an image forming optical system, an image forming optical system has a lens group A including a lens component made up of a positive lens LA and a negative lens LB cemented together and having a negative refracting power as a whole. The lens group A is arranged between a lens group I closest to the object side and an aperture stop. The distance between the lens group I and the lens group A changes for zooming. The lens component has an aspheric cemented surface, and a certain condition concerning the shape of the aspheric surface is satisfied.
Abstract:
In an image forming optical system which includes in order from an object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a negative refractive power, and in which, at the time of zooming, air distances between lens groups are variable, and an air lens nearest to an image side in the third lens group G3 has a shape of a convex lens, the fourth lens group G4 includes one lens component, and is movable even at the time of focusing, and satisfies the following conditional expressions 0.5
Abstract:
An electronic imaging apparatus has a zoom optical system in which the most object-side lens unit A includes one biconcave-shaped negative lens component, each of air-contact-surfaces of which is configured as an aspherical surface, and when the magnification of the zoom optical system is changed in the range from a wide-angle position to a telephoto position, the lens unit A is moved back and forth along the optical axis in such a way that the lens unit A is initially moved toward the image side, and an electronic imaging unit that has an electronic image sensor so that image data picked up by the electronic image sensor are electrically processed and can be output as image data whose format is changed. In this case, in nearly infinite object point focusing, the zoom optical system satisfies the following condition: 0.7
Abstract:
It is preferable that for an image forming optical system a basic structure which includes a first lens group having a negative refracting power, which is made of one cemented lens component, a second lens group having a positive refracting power, a third lens group having a positive refracting power, which is made of one lens component, and is movable for focusing, and a fourth lens group which is made of one lens component having an aspheric surface, and at the time of zooming from a wide angle end to a telephoto end, the second lens group moves only toward the object side, and the first lens group and the third lens group move while following a trajectory of movement different from a trajectory of movement of the second lens group is adopted, and that the image forming optical system satisfies predetermined conditional expressions.
Abstract:
A zoom optical system having a lens group I including two single lenses or one lens component, an aperture stop, and a lens group A disposed between the lens group I and the aperture stop, including a lens component made up of a positive lens LA and a negative lens LB that are cemented together, and having a negative refracting power as a whole. The distance between the lens group I and the lens group A on the optical axis changes for zooming, and the lens component has an aspheric cemented surface. When the shape of the aspheric surface is expressed by a certain equation, the shape of the air-contact surface of the positive lens LA and its aspheric components etc. satisfy conditional expressions (3a) and (3b).
Abstract:
An image forming optical system according to the present invention is characterized in that, in an image forming optical system having a positive lens group, a negative lens group, and an aperture stop, the positive lens group is disposed at an object side of the aperture stop, the positive lens group has a cemented lens which is formed by cementing a plurality of lenses, in a rectangular coordinate system in which a horizontal axis is let to be Nd and a vertical axis is let to be νd, when a straight line indicated by Nd=α×νd+β (where, α=−0.017) is set, Nd and νd of at least one lens forming the cemented lens is included in both of areas namely, an area which is determined by a line when a lower limit value is in a range of a following conditional expression (1a), and a line when an upper limit value is in a range of the following conditional expression (1a), and of an area determined by following conditional expressions (2a) and (3a). 1.45
Abstract:
An image forming optical system comprising, in order from the object side: a first lens group G1 that is fixed during zooming and includes a reflecting optical element for bending an optical path; a second lens group G2 having a negative refracting power and movable during zooming; a third lens group G3 having a positive refracting power; a fourth lens group G4 having a positive refracting power; and a rearmost lens group GR, wherein during zooming from the wide angle end to the telephoto end, the third lens group G3 moves on the optical axis toward the object side, characterized in that the rearmost lens group GR satisfies the following condition: 0.95
Abstract:
A zoom lens with an easily bendable optical path has high optical specification performance such as a high zoom ratio, a wide-angle arrangement, a small F-number and reduced aberrations. It includes a first lens group G1 remaining fixed during zooming, a second lens group G2 having negative refracting power and moving during zooming, a third lens group G3 having positive refracting power and moving during zooming, and a fourth lens group G4 having positive refracting power and moving during zooming and focusing. The first lens group comprises, in order from an object side thereof, a negative meniscus lens component convex on an object side thereof, a reflecting optical element for bending an optical path and a positive lens. Upon focusing on an infinite object point, the fourth lens group G4 moves in a locus opposite to that of movement of the third lens group G3 during zooming.
Abstract:
An imaging apparatus has the function of an optical zoom which optically converts the magnification of an image and the function of an electronic zoom which changes the size of an image by electrical signal processing. The function of the electronic zoom at least operates when the optical zoom is not set at the telephoto end. A total magnification is determined by changing magnification by the optical zoom and changing magnification by the electronic zoom. A pixel count s1 of an electronic imaging device, a pixel count s2 of a rectangle including the pixels on an imaging device which are used by the electronic zoom, and a pixel count s3 of an output satisfy s1≧s2>s3 or s1>s2≧s3.