ROBOT AUTONOMOUS OPERATION METHOD, ROBOT, AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20240085913A1

    公开(公告)日:2024-03-14

    申请号:US18517006

    申请日:2023-11-22

    CPC classification number: G05D1/0212 G01C21/3841 G05D1/0011

    Abstract: A robot autonomous operation method, a robot, and a computer-readable storage medium are provided. The method includes: moving the robot, under a control of a user, along a guide path in an operation scene; generating a map including the guide path by positioning and mapping during the robot being moved along the guide path in the operation scene; generating a plurality of operation points on the guide path in the map; generating an operation path, wherein the operation path passes through all of the unpassed operation points and has a shortest total distance; and moving the robot, according to the operation path, to each of the unpassed operation points so as to perform an operation. In this manner, it controls the robot to explore the guide path in the operation scene by manual guiding, which can improve the exploration efficiency and reduce the risk of exploring unknown operation scenes.

    ROBOT CONTROL METHOD, LEGGED ROBOT USING THE SAME, AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20240025038A1

    公开(公告)日:2024-01-25

    申请号:US18373991

    申请日:2023-09-28

    Abstract: A robot control method, a legged robot using the same, and a computer-readable storage medium are provided. The method includes: obtaining a motion parameter of a driving mechanism of a target part of the robot; and obtaining an end pose of the target part by processing the motion parameter of the driving mechanism according to a preset forward kinematics solving model, where the forward kinematics solving model is a neural network model trained by a preset training sample set constructed according to a preset inverse kinematics function relationship. In this manner, a complex forward kinematics solving process can be transformed into a relatively simple inverse kinematics solving process and neural network model processing process, which reduces the computational complexity, shortens the computational time, thereby meeting the demand for real-time control of the robot.

    Total centroid state estimation method, humanoid robot and computer readable storage medium using the same

    公开(公告)号:US11872701B2

    公开(公告)日:2024-01-16

    申请号:US17485412

    申请日:2021-09-25

    CPC classification number: B25J9/1664 B25J9/1607 G05D2201/0217

    Abstract: A total centroid state estimation method as well as a humanoid robot and a computer readable storage medium using the same are provided. The method includes: obtaining a motion state of each real joint of the humanoid robot and a motion state of its floating base, where the floating base is equivalent to a plurality of sequent-connected virtual joints; calculating a joint position, a centroid position, and a rotation matrix of each link in the world coordinate system in sequence using the chain rule of homogeneous multiplication according to the position of the joint corresponding to the link to solve a Jacobian matrix of the centroid of the link; solving a total centroid Jacobian matrix based on the Jacobian matrix of the centroid of each link and the total mass; and calculating the total centroid velocity based on the total centroid Jacobian matrix and other parameters.

    STORAGE MEDIUM, ROBOT, AND METHOD FOR GENERATING NAVIGATION MAP

    公开(公告)号:US20240004400A1

    公开(公告)日:2024-01-04

    申请号:US18211531

    申请日:2023-09-08

    CPC classification number: G05D1/0274 G05D1/0248 G05D1/0272 G05D2201/0217

    Abstract: A storage medium, a robot, and a method for generating navigation map are provided. By disposing a first lidar and a second lidar located higher than the first lidar, it constructs a first map corresponding to the first lidar based on first laser data collected by the first lidar, and calculate second positioning data corresponding to the second lidar during constructing the first map, constructs a second map corresponding to the second lidar based on the second positioning data and second laser data collected by the second lidar, and obtains a navigation map corresponding to the robot by fusing the first map with the second map, such that the fused map includes not only positioning information provided by the first map, but also obstacle information provided by the first map and the second map.

    ROBOT CALIBRATION METHOD, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20240001558A1

    公开(公告)日:2024-01-04

    申请号:US18369858

    申请日:2023-09-19

    CPC classification number: B25J9/1692 B25J9/1697

    Abstract: A robot calibration method, a robot, and a computer-readable storage medium are provided. The method includes: obtaining operation space information of the execution end of the robot; obtaining operation space points after gridding an operation space of the robot by gridding the operation space based on the operation space information; obtaining calibration data by controlling the execution end to move to the operation space points meeting a preset requirement; and calibrating the hand and the image detection device of the robot based on the obtained calibration data. In this manner, the operation space points are determined by gridding the operation space based on the operation space information, and the execution end can be automatically controlled to move to the operation space points that meet the preset requirements so as to obtain the calibration data in an automatic and accurate manner, thereby simplifying the calibration process and improving the efficiency.

    Energy storing assistive mechanism, robotic joint and robot

    公开(公告)号:US11833673B2

    公开(公告)日:2023-12-05

    申请号:US17499890

    申请日:2021-10-13

    CPC classification number: B25J19/0016 B25J9/102 B25J9/108 B25J9/109 B25J9/123

    Abstract: An energy storing assistive mechanism includes a barrel having a first pivot end and an open end, a rod having a first end that passes through the open end and is received in the barrel, an elastic structure including two ends that abut against the first end of the rod and the first pivot end, a uni-directional gear rack having a second pivot end away from the barrel, and a locking mechanism fixed to the rod, the locking mechanism comprising a locking member and an actuator assembly that is to drive the locking member to move between a first position where the locking member is engaged with the gear rack, and a second position where the locking member is disengaged from the gear rack.

    METHOD FOR CONTROLLING ROBOT, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230373089A1

    公开(公告)日:2023-11-23

    申请号:US18230620

    申请日:2023-08-05

    CPC classification number: B25J9/1661

    Abstract: A method for controlling a robot includes: obtaining current motion state information of the robot and desired motion trajectory information corresponding to a target task; determining task execution coefficient matrices corresponding to the robot performing the target task according to the desired motion trajectory information and the motion state information; constructing matching dynamic constraints for task-driven parameters of the robot according to the desired motion trajectory information and the motion state information; constructing matching parameter distribution constraints for the task-driven parameters according to the motion state information and body action safety constraints corresponding to the target task; solving a pre-stored task execution loss function by using the task execution coefficient matrices to obtain the target-driven parameters satisfying the dynamic constraints and the parameter distribution constraints; and controlling operation state of each joint end effector of the robot according to the target-driven parameters.

    TRAJECTORY PLANNING METHOD, COMPUTER-READABLE STORAGE MEDIUM, AND ROBOT

    公开(公告)号:US20230359207A1

    公开(公告)日:2023-11-09

    申请号:US18222448

    申请日:2023-07-16

    CPC classification number: G05D1/0212 B25J11/00 B25J9/10

    Abstract: A trajectory planning method, a computer-readable storage medium, and a robot are provided. The method includes: constructing a phase variable of a trajectory planning of a robot, where the phase variable is a function of two position components of a torso of the robot on a horizontal plane; and performing, using the phase variable replacing a time variable, the trajectory planning on a swinging leg of the robot in each preset coordinate axis direction. In this manner, the robot can no longer continue to follow the established trajectory after being disturbed by the environment, but make state adjustments according to the disturbance received to offset the impact of the disturbance, thereby maintaining walking stability and avoiding the problem of early or late landing of the swinging leg.

Patent Agency Ranking