Abstract:
A prepack well screen assembly for separating particulate material from formation fluid has inner and outer screens concentrically mounted in radially spaced relation around a perforated mandrel, thereby defining a prepack annulus in which a plurality of spherical plastic members are disposed. The concentric inner screen includes longitudinally extending rib wires spaced circumferentially around the mandrel, and a screen wire wrapped externally about the rib wires in a longitudinally spaced pattern to define spaced screen apertures for conducting formation fluids through the inner screen. The outer screen is a cylindrical fluid-porous, particulate-restricting member which is radially spaced from the inner screen to form the prepack annulus. The particulate-restricting member includes rib wires which are spaced circumferentially around the inner screen within the prepack annulus, and an outer screen wire wrapped externally about the rib wires to define the annulus. The outer screen wire is wrapped about the rib wires in a longitudinally spaced pattern to delineate spaced screen apertures for conducting formation fluids through the outer screen. The spherical plastic members are disposed within the prepack annulus and heated until the spherical plastic members become tacky and bond to each other to form a sintered, homogenous mass.
Abstract:
A filter cartridge for use in a fluid filtering system, constructed to induce rotational flow in the unfiltered fluid, includes a pleated filter sleeve in which the individual sleeves are slanted relative to the sleeve circumference in a direction opposite to the direction of the rotational flow fluid. The slanted pleats can be constructed by creasing a sheet of filter media at alternatingly shorter and longer widths to form pleats having relatively shorter front legs and relatively longer back legs. The shorter front legs bias the pleats in the counter-rotational direction.
Abstract:
A porous filter medium is formed by a pleated cylinder of a depth filter medium. An absolute rated inner filtration layer is arranged between upstream and downstream drainage layers. The depth filter medium is formed from a continuous sleeve. Additionally or alternatively at least the downstream drainage layer may be formed integrally with at least a part of an inner filtration layer. The material of the medium may be a fibrous mass of non-woven synthetic polymeric micro-fibers which are free of fiber-to-fiber bonding and are secured to each other by mechanical entanglement or intertwining, with the diameter of the fibrous structure varying across the medium.
Abstract:
A filtering system comprises an outer housing into which fluid enters tangentially through a side inlet port to create rotational flow therein. Solid contaminants which clog filtering media are precipitated to the bottom of housing through action of centrifugal force in rotational flow. An inner can, disposed within the housing shrouds a filter cartridge. Unfiltered fluid flows rotationally into the inner can and is filtered through a vertical cylindrical filter cartridge. Filtered fluid flows up through the center of said cartridge to a clean fluid chamber below a domed cover and exists downwardly through a vertical outlet tube extending through the filter cartridge to an outlet port in the bottom of the housing. Gases in the system are collected in the clean fluid chamber and transported by the fluid flow through the outlet tube, thereby automatically purging gases from the filtering system.
Abstract:
This invention comprehends a new and unique means for preventing the crowns (forward projections of the pleats) of a backflushable filter element from splitting due to the cyclic action that is experienced during cleaning and backflushing. In one embodiment, a plurality of spacers, preferably wedge shape, is positioned between the outwardly projecting pleats of the filter media thereby preventing the splitting thereof. A plurality of spacers may also be placed between the inwardly projecting pleats to provide additional support during the cleaning and backflushing cycle. In another embodiment a ring is placed adjacent the inwardly directed pleats and the inner end cap lip; this also prevents splitting of the crowns when the filter element is subjected to the cyclic action of cleaning and backflushing.
Abstract:
A consumer rebuildable filter cartridge for mounting in a fluid filter chamber in a fluid flow path includes inner and outer perforated tubular members mounted coaxially on a fixed end cap to form an annular chamber. A filter element of pleated sheet filter material is formed in a tubular construction and fitted into the annular space defined between the inner and outer tubular members and is sealed at each end by suitable resilient seal washers, compressed between the fixed end cap and a movable end cap. The inner and outer tubular members forms support structure for supporting the tubular paper filter element and permits the removal and replacement of such filter elements.
Abstract:
A corrugated tubular filter element is provided, resistant to corrugation collapse under high differential pressure, although formed of filter sheet material susceptible to such collapse, comprising, in combination, filter sheet material enclosed in a dual layer of more open foraminous sheet material and formed in a closed corrugated configuration having axial corrugation folds arranged in groups with adjacent side surfaces in supporting contact with each other; and, interposed between said groups, solid wedge support elements extending axially of the corrugation folds from end to end of the element having side surfaces in supporting contact with external side surfaces of the end folds of each group, substantially filling the spaces between the end folds of adjacent groups, and confining the folds of each group in substantially parallel array against lateral movement; and a foraminous support sheath disposed at least one of externally and internally of the filter sheet material in supporting contact with adjacent fold ends and retaining the wedge support elements and folds against one of outward and inward movement.
Abstract:
A process is provided for the continuous production of nonwoven webs in cylindrical or sheet form from thermoplastic fibers, spinning the fibers continuously from a melt onto a rotating mandrel and winding them up on the mandrel to form a generally spirally wound cylinder. Density of the wound cylinder is controlled by controlling the distance between the rotating mandrel and the orifices of the spinning die through which the molten polymeric material is spun. If the spinning of the fibers is continuous, the cylinder can be formed in a continuous length. Control of the spinning rate in relation to the diameter and rate of rotation of the mandrel and the rate of advance of the cylinder on the mandrel controls the thickness of the cylinder. The cylinder can be drawn off the mandrel and used as a cylinder, or either slit lengthwise and opened out, or collapsed onto itself, for use as a sheet. The process is particularly adapted for forming filter elements.