Abstract:
An arrangement for transforming a planar support (2) includes first and second rotating cylindrical transformation tools (16, 17), cooperating to convert the support (2), first and second side bearings (26, 27), holding the first tool (16) for rotation (Rs), third and fourth side bearings (29, 31), holding the second tool (17) for rotation (Ri), spacers (43, 44, 46, 47) having an inclined face (48) and slidable (S) to adjust the respective distances (e, e1, e2) between the first and third bearings (26, 29) and between the second and fourth bearings (27, 31), to set a radial gap (20) between the two tools (16, 17). In another solution, either as an alternative to or in cooperation with the first solution, the spacer (43) is moved (S) by a differential screw (57) having a first thread (58) that engages with a tapped hole (59) in an integral part (61) of one of the bearings (29) and a second thread (62) different than the first thread (58) and engaging with a tapped hole (63) in the spacer (43).
Abstract:
The embossing unit includes in combination: a first support for a first embossing roller and a second support for a first pressure roller, cooperating with the first embossing roller. The second support presents two seats to receive and support the first pressure roller in two different positions with respect to this support. The embossing unit also includes a third support for a second embossing roller. The third support can take at least two different operating positions. A fourth support is provided to support a second pressure roller suitable to cooperate with the second embossing roller and suitable to take at least an operating position and an idle position. Finally, there is provided a fifth support with a double seat to receive and support in two different positions alternatively a marrying roll or the second pressure roller.
Abstract:
An apparatus for controlling the nip force between a fixed roll having a first longitudinal axis and a pivoting roll pivotable about a pivot axis and having a second longitudinal axis is disclosed.
Abstract:
An embossing unit including at least one embossing roller, provided with embossing protrusions or recesses on a cylindrical surface; at least one pressure roller coated with an elastically yielding material and cooperating with the embossing roller; at least one actuator that presses the pressure roller and the embossing roller against each other; an automatic position adjustment system, to adjust the reciprocal position of the pressure roller and the embossing roller.
Abstract:
An embossing system for embossing and perforating at least a portion of a web is provided comprising a first embossing roll having embossing elements and at least a second embossing roll having embossing elements, wherein the elements of the first and second embossing rolls define perforate nips for embossing and perforating the web and wherein at least a predominate number of the perforate nips are substantially oriented in the cross-machine direction. Moreover, substantially all of the nips defined by the embossing elements of the first and second embossing rolls can be substantially oriented in the cross-machine direction. Further, the cross-machine embossing elements are at an angle of about 85° to 95° from the machine direction.
Abstract:
A method of manufacturing a hygiene product, includes the steps of providing at least a first web (1) and a second web (2), pre-treating the first web and/or the second web, embossing the first web with a décor embossing pattern in a first décor embossing zone (38) having a décor embossing roll (34), and laminating together the first web and the second web in a lamination zone (30), the lamination zone being defined between the décor embossing roll and a lamination roll (36), wherein the décor embossing roll and the lamination roll have a generally-equal surface hardness.
Abstract:
An embossing assembly for sheet material includes at least two embossing rollers, the ends of which are rotatably mounted in the side panels of an embossing machine. Each of the side panels is divided into a fixed portion and at least one movable portion. The ends of the embossing rollers are mounted in supports which are removably fixed in seats formed in the fixed portions of the side panels or in the movable portions of the side panels of the machine. In this manner, when the movable portions of side panels are moved with respect to the fixed portions of side panels, a space is cleared for removal of at least a portion of the embossing roller supports.
Abstract:
A method of embossing an absorbent web with a machine direction undulatory structure is described. The web has a plurality of ridges extending in its machine direction occurring at a frequency, F, across the web and the method includes providing the web to an embossing station where the web is embossed between a first and second embossing roll, each of which rolls may be provided with a plurality of embossing elements configured to define a plurality of embossing nips. At least a portion of the embossing nips are substantially oriented in a cross-machine direction with respect to the web and have a cross direction length, L. The product F×L is from about 0.1 to about 5.
Abstract:
An embossing system is provided for embossing a web having a first embossing roll having embossing elements and a second embossing roll having embossing elements, wherein at least a portion of the embossing elements of the first and second embossing rolls are substantially oriented in the cross-machine direction. The embossing roll may be crowned, may have alignment means, and may be provided with precision gearing.
Abstract:
The device for satinizing and embossing flat materials comprises an embossing roll and at least one mating roll, said rolls being connected to a driving system and adapted to be driven individually or in common and to be resiliently pressed against one another while the individual teeth are flattened, and the embossing teeth being designed such as to produce in the corresponding locations of said flat material during its passage embossed marks whose appearance varies according to the viewing angle of the observer and/or the kind and/or the position of the lighting source, the embossing teeth which produce said variable marks having a different geometrical shape and/or surface than the satinizing teeth intended for satinizing. To this end, the surfaces of said embossing teeth and/or portions of the tooth space bottom are provided with microstructures. These microstructures allow producing largely forgery-proof marks which may furthermore provide a very decorative effect.