Abstract:
An air turbine starter for starting an engine includes a starter housing defining an inlet, an outlet, and a flow path extending between the inlet and the outlet. The air turbine starter can include a rotatable turbine member having a central hub defining a platform and at least one blade extending radially from the platform. The air turbine starter can also include a blade cutter.
Abstract:
A rotatable nacelle includes an engine inlet configured to receive air and an inlet air management system (IAMS). The IAMS includes a primary inlet configured to selectively allow air to flow into a duct associated with the engine air inlet via the primary inlet and a secondary inlet configured to selectively allow air to flow into the duct associated with the engine air inlet via the secondary inlet. The secondary inlet is configured to receive an air filter.
Abstract:
Air filter cartridges are disclosed. Also described are air cleaners including the filter cartridges. Methods of assembly and use are also provided. Also, systems of use are described.
Abstract:
An assembly of a gas turbine engine includes a low pressure compressor, a high pressure compressor, an intermediate case between the low pressure compressor and the high pressure compressor, and a cleaning apparatus having an annular arrangement about the intermediate case. A core flow path is defined through the low pressure compressor, the intermediate case, and the high pressure compressor. The annular arrangement includes a scroll portion configured to extract debris from an airstream at an outer diameter wall of the core flow path and return the airstream to the core flow path.
Abstract:
Methods and systems for filtering pressurized air used to control a compressor bleed valve of a gas turbine engine are provided. One method comprises receiving the pressurized air in a conduit via an inlet of the conduit, releasing a first portion of the pressurized air out of the conduit via an outlet of the conduit, releasing a second portion of the pressurized air from the conduit via a port disposed between the inlet and the outlet of the conduit, directing the second portion of the pressurized air from the port to a filter along an upward flow path, filtering the second portion of the pressurized air using the filter, and directing the second portion of the pressurized air from the filter toward the compressor bleed valve.
Abstract:
A turbofan engine is provided. The turbofan engine includes a fan comprising a plurality of fan blades; a turbomachine operably coupled to the fan for driving the fan, the turbomachine comprising a compressor section, a combustion section, and a turbine section in serial flow order and together defining a core air flowpath; a nacelle surrounding and at least partially enclosing the fan; an inlet pre-swirl feature located upstream of the plurality of fan blades, the inlet pre-swirl feature attached to or integrated into the nacelle; and a means for directing incoming objects towards an outer portion of the turbofan engine in communication with the inlet pre-swirl feature.
Abstract:
A core duct assembly for a gas turbine engine includes a core duct including an outer and an inner wall, the outer wall having an interior surface; a gas flow path member extending across the gas flow path at least partly between the inner and outer walls, the rotor blade having a radial span extending from a blade platform to a blade tip, wherein an upstream wall axis is defined as an axis tangential to a point on a first portion of the interior surface of the outer wall of the core duct extending downstream from the gas flow path member, the upstream wall axis lying in a longitudinal plane of the gas turbine engine containing the rotational axis of the engine, and wherein the upstream wall axis intersects the rotor blade at a point spaced radially inward from the blade tip of the rotor blade.
Abstract:
A method for designing and/or controlling a filter assembly for the air supply to a turbomachine includes: calculating a current and/or an expected concentration of particles in air present at an inlet of at least one filter stage of the filter assembly as a function of a mean size of the particles; calculating a sensitivity spectrum that, depending on the mean size of the particles, indicates an extent to which a predetermined concentration of such particles has a negative effect on performance and/or on service life of the turbomachine; calculating, for at least one filter candidate usable in the filter stage and/or switchable on or off, a concentration of particles to be expected at an outlet of the filter from a concentration and filter properties of the at least one filter candidate; and calculating a quality rating from the concentration and a sensitivity spectrum.