Abstract:
A three-dimensional micro-electro-mechanical-systems (MEMS) capacitive bending and axial strain sensor capacitor is described. Two independent comb structures, incorporating suspended polysilicon interdigitated fingers, are fabricated simultaneously on a substrate that can displace independently of each other while attached to a substrate undergoing bending or axial deformation. A change in spacing between the interdigitated fingers will output a change in capacitance of the sensor and is the primary mode of operation of the device. On the bottom and to the end of each comb structure, a glass pad is attached to the comb structure to allow for ample surface area for affixing the sensor to a substrate. During fabrication, tethers are used to connect each comb structure to maintain equal spacing between the fingers before attachment to the substrate. After attachment, the tethers are broken to allow independent movement of each comb structure.
Abstract:
A micro-electromechanical capacitive strain sensor. The micro-electromechanical capacitive strain sensor comprises a first bent beam, a second bent beam, and a straight center beam. The first bent beam, second bent beam, and straight center beam are aligned in the X-axis with the straight center beam located between the first and second bent beams. The first bent beam, second bent beam, and straight center beam are disposed between two anchors. The two anchors are aligned in the Y-axis. The first bent beam is bent away from the center beam and the second bent beam is bent towards the center beam to provide a set of differential capacitors with respect to the center beam, wherein the center beam serves as a common reference with respect to the first and second bent beams.
Abstract:
A micro-electromechanical capacitive strain sensor. The micro-electromechanical capacitive strain sensor comprises a first bent beam, a second bent beam, and a straight center beam. The first bent beam, second bent beam, and straight center beam are aligned in the X-axis with the straight center beam located between the first and second bent beams. The first bent beam, second bent beam, and straight center beam are disposed between two anchors. The two anchors are aligned in the Y-axis. The first bent beam is bent away from the center beam and the second bent beam is bent towards the center beam to provide a set of differential capacitors with respect to the center beam, wherein the center beam serves as a common reference with respect to the first and second bent beams.
Abstract:
A sensor comprises a semiconductor pellet (10) including a working portion (11) adapted to undergo action of a force, a fixed portion (13) fixed on the sensor body, and a flexible portion (13) having flexibility formed therebetween, a working body (20) for transmitting an exerted force to the working portion, and detector means (60-63) for transforming a mechanical deformation produced in the semiconductor pellet to an electric signal to thereby detect a force exerted on the working body as an electric signal. A signal processing circuit is applied to the sensor. This circuit uses analog multipliers (101-109) and analog adders/subtracters (111-113), and has a function to cancel interference produced in different directions. Within the sensor, two portions (E3, E4-E8) located at positions opposite to each other and producing a displacement therebetween by action of a force are determined. By exerting a coulomb force between both the portions, the test of the sensor is carried out.
Abstract:
According to some embodiments, a conducting layer is formed on a first wafer. An insulating layer is formed on a second wafer. The insulating layer includes a cavity and a conducting area may be formed in the second wafer proximate to the cavity. The side of the conducting layer opposite the first wafer is bonded to the side of the insulating layer opposite the second wafer. At least some of the first wafer is then removed, without removing at least some of the conducting layer, to form a conducting diaphragm that is substantially parallel to the second wafer. In this way, an amount of capacitance between the diaphragm and the conducting area may be measured to determine an amount of pressure being applied to the diaphragm.
Abstract:
According to some embodiments, a conducting layer is formed on a first wafer. An insulating layer is formed on a second wafer. The insulating layer includes a cavity and a conducting area may be formed in the second wafer proximate to the cavity. The side of the conducting layer opposite the first wafer is bonded to the side of the insulating layer opposite the second wafer. At least some of the first wafer is then removed, without removing at least some of the conducting layer, to form a conducting diaphragm that is substantially parallel to the second wafer. In this way, an amount of capacitance between the diaphragm and the conducting area may be measured to determine an amount of pressure being applied to the diaphragm.
Abstract:
A three-dimensional micro-electro-mechanical-systems (MEMS) capacitive bending and axial strain sensor capacitor is described. Two independent comb structures, incorporating suspended polysilicon interdigitated fingers, are fabricated simultaneously on a substrate that can displace independently of each other while attached to a substrate undergoing bending or axial deformation. A change in spacing between the interdigitated fingers will output a change in capacitance of the sensor and is the primary mode of operation of the device. On the bottom and to the end of each comb structure, a glass pad is attached to the comb structure to allow for ample surface area for affixing the sensor to a substrate. During fabrication, tethers are used to connect each comb structure to maintain equal spacing between the fingers before attachment to the substrate. After attachment, the tethers are broken to allow independent movement of each comb structure.
Abstract:
At least one shear force sensor is used to measure the shear force on a member, when the member is in contact with and pressed against a polishing or planarization surface and a lateral force is applied between the two surfaces. Preferably the structure and the surface of the structure have properties (such as one or more of the following: dimensions and coefficient of friction) that are substantially the same as those of a real substrate, such as a semiconductor wafer or flat panel display panel.
Abstract:
A sealed capacitive sensor includes a substrate having a diaphragm forming a first plate of a capacitor; a second fixed plate of the capacitor spaced from the diaphragm and defining a predetermined dielectric gap and a sealing medium connecting together the substrate and fixed plate in an integrated structure and hermetically sealing the gap.
Abstract:
A capacitive pressure sensing device comprising, a base member, a diaphragm member deflectable under an external pressure, a cantilever member disposed between the base member and the diaphragm member and supported on a support structure, wherein the base member and the cantilever member form a capacitor structure of the device and wherein deflection of the diaphragm member beyond a threshold value causes the cantilever member to deflect to cause a capacitive change in the capacitor structure.