Abstract:
A method for forming a hole in an object is provided. The method includes forming a starter hole in the object, providing an electrochemical machining electrode that includes insulation that extends only partially around the electrode, and inserting the electrode into the starter hole to form a hole in the object that has an inlet defined by a first cross-sectional area and an outlet defined by a second cross-sectional area.
Abstract:
A gas turbine engine having a longitudinal centerline axis therethrough, including: a fan section at a forward end of the gas turbine engine including at least a first fan blade row connected to a first drive shaft; a booster compressor positioned downstream of and in at least partial flow communication with the fan section including a plurality of stages, each stage including a stationary compressor blade row and a rotating compressor blade row connected to a drive shaft and interdigitated with the stationary compressor blade row; a core system positioned downstream of the booster compressor, the core system further comprising a combustion system for producing pulses of gas having increased pressure and temperature from a fluid flow provided to an inlet thereof so as to produce a working fluid at an outlet; a low pressure turbine positioned downstream of and in flow communication with the core system, the low pressure turbine being utilized to power the first drive shaft; and, a system for cooling the combustion system, wherein fuel is utilized as a cooling fluid prior to being supplied to the combustion system. The core system may further include an intermediate compressor positioned downstream of and in flow communication with the compressor connected to a second drive shaft; and an intermediate turbine positioned downstream of the combustion system in flow communication with the working fluid.
Abstract:
A method for assembling a gas turbine engine is provided. The method includes providing a turbine nozzle including an outer band and an inner band, wherein each band includes a leading edge, a trailing edge, and a body extending therebetween. At least one of the outer band and the inner band has at least one radial tab extending outward therefrom. The method also includes coupling at least one seal between at least one of the radial tabs extending from the outer band and the inner band and a respective leading edge of the outer and inner band. The method also includes positioning at least one non-planar seal support against at least one portion of the seal.
Abstract:
Disclosed herein is an article comprising a solidified first portion of a ceramic core; wherein the first solidified portion is manufactured by a process comprising disposing a slurry comprising ceramic particles into a metal core die; wherein an internal volume of the metal core die has a geometry equivalent to a portion of the geometry of the integral casting core; curing the slurry to form a cured first portion of the ceramic core; firing the cured first portion of the ceramic core to form a solidified first portion of the ceramic core; and a solidified second portion of the ceramic core; wherein the solidified second portion is disposed upon the solidified first portion of the ceramic core by laser consolidation.
Abstract:
A turbine assembly for a gas turbine engine. The turbine assembly includes at least one stator assembly including a radially inner band and at least one stator vane that extends radially outward from the inner band. The stator vane includes an airfoil having a root portion adjacent to the inner band and a tip portion. The airfoil also includes at least one lean directional change that is defined between the root portion and the tip portion. The turbine assembly also includes at least one turbine blade assembly that includes at least one rotor blade. The blade assembly is coupled in flow communication with the stator assembly such that an axial spacing is defined therebetween. The axial spacing defined adjacent to the at least one lean directional change is wider than the axial spacing defined adjacent to the root portion.
Abstract:
A method facilitates fabricating an airfoil for use with a turbine blade. The method comprises forming a substantially solid ceramic airfoil core, inserting the core into a die and casting the airfoil with a pressure side wall and a suction side wall connected together at a leading edge and a trailing edge, such that a plurality of first trailing edge slots and at least one second trailing edge slot extend from the trailing edge along the pressure side wall, wherein the second trailing edge slot has a length, measured between an inlet and an exit of the slot, that is longer than a corresponding length of each of the plurality of first trailing edge slots.
Abstract:
Disclosed herein is a method comprising creating a weld pool using a laser; wherein the weld pool is created on a part of a turbine; and wherein the weld pool comprises molten metal or ceramic derived as a result of a heat interaction between the laser and the part of the turbine; adding a metal or a ceramic powder or a wire filler to the melt pool; and modifying the part of the turbine in a manner that results in a change of about 0.005 to about 50 volume percent in the part of the turbine, while improving the aerodynamic efficiency of the turbine in an amount of about 0.1 to about 5 percent over a corresponding unmodified turbine.
Abstract:
A method of assembling a gas turbine engine is provided. The method includes coupling at least one turbine nozzle segment within the gas turbine engine. The at least one turbine nozzle segment includes at least one airfoil vane extending between an inner band and an outer band that includes an aft flange and a radial inner surface. The method also includes coupling at least one turbine shroud segment downstream from the at least one turbine nozzle segment, wherein the at least one turbine shroud segment includes a leading edge and a radial inner surface, coupling a cooling fluid source in flow communication with the at least one turbine nozzle segment such that cooling fluid channeled to each turbine nozzle outer band aft flange is directed at an oblique discharge angle towards the leading edge of the at least one turbine shroud segment, and channeling the cooling fluid through at least a first group of cooling openings having a larger aggregate cross-sectional area and a second group of cooling openings having a smaller aggregate cross-sectional area to facilitate preferential cooling of the turbine shroud.
Abstract:
A method for cooling a shroud segment of a gas turbine engine is provided. The method includes providing a turbine shroud assembly including a shroud segment having an inner surface and a leading edge that is substantially perpendicular to the inner surface, and coupling a turbine nozzle to the turbine shroud segment such that a gap is defined between an aft edge of an outer band of the turbine nozzle and the leading edge. The method also includes directing cooling air into the gap, and directing the cooling air in the gap through at least one cooling hole extending between the leading edge and the inner surface.
Abstract:
A method of assembling a gas turbine engine includes coupling a turbine shroud assembly within the gas turbine engine. The turbine shroud assembly includes a shroud segment having a leading edge defining a forward face and a radial inner surface. A turbine nozzle is coupled to the turbine shroud assembly such that a gap is defined between an aft face of an outer band of the turbine nozzle and the forward face. A plurality of recuperated cooling openings are defined through the leading edge at an oblique inlet angle with respect to a centerline of the gap and between the forward face and the radial inner surface to direct cooling fluid through the leading edge to facilitate preferential cooling of the leading edge.