Abstract:
A wall structure (32, 42, 68, 70, 80) with layers (A, B, C, D, E) of non-random voids (26A, 26B, 28B, 30B) that interconnect to form discretely defined tortuous passages between an interior (21) and an exterior surface (23) of the wall for transpiration cooling of the wall. A coolant flow (38) through the wall may be metered by restrictions in coolant outlets (31) and/or within the passages to minimize the coolant requirement. Pockets (44) may be formed on the exterior surface of the wall for thermal Insulation (46). The layers may be formed by lamination, additive manufacturing, or casting. Layer geometries include alternating layers (A, B, C) with different overlapping void patterns (42), 3-D lattice structures (70), and offset waffle structures (80).
Abstract:
A seal member for effecting a seal preventing fluid flow in an axial direction through an annular space formed between two relatively moving components including a rotatable shaft and a stator structure. The seal member includes a plurality of flexible seal strips. Each seal strip includes a planar plate extending radially through the annular space and having a radially outer end supported to the stator structure and a radially inner end defining a tip portion extending widthwise in the axial direction engaged in sliding contact with a peripheral surface of the rotatable shaft. At least one of the seal strips includes a plurality of perforations extending through the seal strip and located between a leading edge and a trailing edge of the seal strip for effecting an increased flexibility of the seal strip adjacent to the tip portion.
Abstract:
A stator vane that may be used in an engine assembly is provided. The stator vane includes an airfoil that has a first sidewall and a second sidewall, which connects to the first sidewall at a leading edge and at a trailing edge. The airfoil also includes a root portion and a tip portion. The first and second sidewalls both extend from the root portion to the tip portion. The airfoil root portion is formed with a negative lean, and the airfoil tip portion is formed with a positive lean.
Abstract:
A stator vane that may be used in an engine assembly is provided. The stator vane includes an airfoil that has a first sidewall and a second sidewall, which connects to the first sidewall at a leading edge and at a trailing edge. The airfoil also includes a root portion and a tip portion. The first and second sidewalls both extend from the root portion to the tip portion. The airfoil root portion is formed with a negative lean, and the airfoil tip portion is formed with a positive lean.
Abstract:
An airfoil for a gas turbine engine includes a root, a tip, a leading edge, a trailing edge, and opposed pressure and suction sidewalls extending generally along a radial axis. The airfoil includes a tip cap extending between the pressure and suction sidewalls; and spaced-apart suction-side and pressure-side tip walls extending radially outward from the tip cap to define a tip cavity therebetween. The pressure-side tip wall includes a continuously concave curved arcuate portion, at least a section of which extends circumferentially outward from a radial axis of the airfoil.
Abstract:
A turbine blade includes an airfoil having pressure and suction sidewalls extending between leading and trailing edges, and from root to tip. A dovetail is joined to the airfoil root at a platform. Three internal cooling circuits extend in span inside the airfoil, and each circuit includes a respective inlet channel commencing in axially adjacent alignment in the dovetail. The inlet channels twist together from the dovetail, through the platform, and into the airfoil behind the leading edge in transverse adjacent alignment across the sidewalls.
Abstract:
The separator ring to be used with thrust bearings is an annular member with a plurality of circumferentially separated roller engaging portions. The rollers have outer ends constructed to mate with the roller end engaging portions of the annular member. The roller engaging portions on the annular member may be protrusions extending radially inwardly toward the axis of the bearing with the rollers having depressions on the outer ends for receiving the protrusions or alternatively, the roller engaging portions may be radially outwardly extending depressions with the rollers having outer surfaces which fit into the depressions.
Abstract:
A seal member for effecting a seal preventing fluid flow in an axial direction through an annular space formed between two relatively moving components including a rotatable shaft and a stator structure. The seal member includes a plurality of flexible seal strips. Each seal strip includes a planar plate extending radially through the annular space and having a radially outer end supported to the stator structure and a radially inner end defining a tip portion extending widthwise in the axial direction engaged in sliding contact with a peripheral surface of the rotatable shaft. At least one of the seal strips includes a plurality of perforations extending through the seal strip and located between a leading edge and a trailing edge of the seal strip for effecting an increased flexibility of the seal strip adjacent to the tip portion.
Abstract:
A resonance chamber (42) has an outer wall (32) with coolant inlet holes (34A-C), an inner wall (36) with acoustic holes (38), and side walls (40A-C) between the inner and outer walls. A depression (33A-C) in the outer wall has a bottom portion (50) that is close to the inner wall compared to peaks (37A-C) of the outer wall. The coolant inlet holes may be positioned along the bottom portion of the depression and along a bottom portion of the side walls to direct coolant flows (44, 51) toward impingement locations (43) on the inner wall that are out of alignment with the acoustic holes. This improves impingement cooling efficiency. The peaks (37A-C) of the outer wall provide volume in the resonance chamber for a target resonance.
Abstract:
A wall structure (32, 42, 68, 70, 80) with layers (A, B, C, D, E) of non-random voids (26A, 26B, 28B, 30B) that interconnect to form discretely defined tortuous passages between an interior (21) and an exterior surface (23) of the wall for transpiration cooling of the wall. A coolant flow (38) through the wall may be metered by restrictions in coolant outlets (31) and/or within the passages to minimize the coolant requirement. Pockets (44) may be formed on the exterior surface of the wall for thermal Insulation (46). The layers may be formed by lamination, additive manufacturing, or casting. Layer geometries include alternating layers (A, B, C) with different overlapping void patterns (42), 3-D lattice structures (70), and offset waffle structures (80).