摘要:
A turbine power generation system with enhanced stabilization of refractory carbides provided by hydrocarbon from high carbon activity gases is disclosed. The disclosure also includes a method of using high carbon activity gases to stabilize hot gas path components.
摘要:
An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.
摘要:
A component is disclosed. The component includes a substrate comprising an outer surface and an inner surface. The inner surface defines at least one hollow, interior space, and the outer surface defines one or more grooves that extend at least partially along the outer substrate surface and have a respective base. One or more access holes are formed through the base of a respective groove, to connect the groove in fluid communication with the respective hollow interior space. The component further includes a coating comprising one or more layers disposed over at least a portion of the outer substrate surface. The groove(s) and the coating together define one or more channels for cooling the component. One or more trenches are formed through one or more coating layers and at least partially define at least one exit region for the cooling channel(s). A method of fabricating a component is also provided.
摘要:
A method of manufacturing a component is provided. The method includes forming one or more grooves in an outer surface of a substrate. Each groove extends at least partially along the surface of the substrate and has a base, a top and at least one discharge point. The method further includes forming a run-out region adjacent to the discharge point for each groove and disposing a coating over at least a portion of the surface of the substrate. The groove(s) and the coating define one or more channels for cooling the component. Components with cooling channels are also provided.
摘要:
A component includes a substrate having an outer surface, an inner surface and a tip. The inner surface defines at least one hollow, interior space. The outer surface defines one or more grooves, where each groove extends at least partially along the outer surface of the substrate and has a base. The component further includes a coating disposed over at least a portion of the outer surface of the substrate. The coating includes at least a structural coating that extends over the groove(s), such that the groove(s) and the structural coating together define one or more channels for cooling the component. The tip comprises a tip cap enclosing the hollow, interior space(s), and a tip rim disposed at a radially outer end of the substrate. The tip rim at least partially defines at least one discharge channel in fluid communication with at least one cooling channel.
摘要:
A turbine airfoil includes a leading edge having a concave cooling flow passage. An apex of the concave cooling flow passage divides the flow passage into adjacent regions. The turbine airfoil includes a first plurality of turbulators disposed in one of the adjacent regions, and a second plurality of turbulators disposed in the other of the adjacent regions. The first and second pluralities of turbulators are positioned relative to one another to divert cooling flow in opposing swirl streams that recombine along the apex and to effect a desired heat transfer and pressure loss.
摘要:
A system for producing at least one trench to improve film cooling in a sample is provided. The system includes at least one laser source outputting at least one pulsed laser beam. The pulsed laser beam includes a pulse duration including a range less than about 50 μs, an energy per pulse having a range less than about 0.1 Joule, and a repetition rate with a range greater than about 1000 Hz. The system also includes a control subsystem coupled to the laser source, the control subsystem configured to synchronize a position of the sample with the pulse duration and energy level in order to selectively remove at least one of a thermal barrier coating, a bondcoat and a substrate metal in the sample to form the at least one trench.
摘要:
A method of fabricating a component is provided. The fabrication method includes depositing a first layer of a structural coating on an outer surface of a substrate. The substrate has at least one hollow interior space. The fabrication method further includes machining the substrate through the first layer of the structural coating, to define one or more openings in the first layer of the structural coating and to form respective one or more grooves in the outer surface of the substrate. Each groove has a respective base and extends at least partially along the surface of the substrate. The fabrication method further includes depositing a second layer of the structural coating over the first layer of the structural coating and over the groove(s), such that the groove(s) and the second layer of the structural coating together define one or more channels for cooling the component. A component is also disclosed.
摘要:
A method of fabricating a component is provided. The method includes depositing a fugitive coating on a surface of a substrate, where the substrate has at least one hollow interior space. The method further includes machining the substrate through the fugitive coating to form one or more grooves in the surface of the substrate. Each of the one or more grooves has a base and extends at least partially along the surface of the substrate. The method further includes forming one or more access holes through the base of a respective one of the one or more grooves to connect the respective groove in fluid communication with the respective hollow interior space. The method further includes filling the one or more grooves with a filler, removing the fugitive coating, disposing a coating over at least a portion of the surface of the substrate, and removing the filler from the one or more grooves, such that the one or more grooves and the coating together define a number of channels for cooling the component.
摘要:
A stator-rotor assembly which includes at least one interface region between the stator and rotor is described. At least one stator or rotor surface in the interface region includes a pattern of concavities. The concavities restrict gas flow through a gap between the stator and the rotor. Various turbomachines which can contain such a stator-rotor assembly are also described. The disclosure also discusses methods to restrict gas flow through gaps in a stator-rotor assembly, utilizing the concavities.