Stimulated brillouin scattering gyroscope

    公开(公告)号:US11079233B2

    公开(公告)日:2021-08-03

    申请号:US16575116

    申请日:2019-09-18

    Abstract: A stimulated Brillouin scattering gyroscope is provided. A pump laser generates continuous wave (CW) energy that travels through at least one bus waveguide to a waveguide resonator. A reflector is positioned within the waveguide resonator. The reflector is configured to pass at least some of the CW energy in a first direction and reflect at least some stimulated Brillouin scattering (SBS) energy in a second direction. A first detector is in operational communication with the at least one bus waveguide to detect CW energy. An output of the first detector used to at least adjust a pump laser frequency of the pump laser. A second detector is also in operational communication with the at least one bus waveguide. The second detector is used to determine phase shifts in detected SBS energy to determine at least rotation.

    INTEGRATED PHOTONICS MODE SPLITTER AND CONVERTER

    公开(公告)号:US20210116783A1

    公开(公告)日:2021-04-22

    申请号:US16803820

    申请日:2020-02-27

    Abstract: Systems and embodiments for an integrated photonics mode splitter and converter are provided herein. In certain embodiments, a system includes a substrate having a first index of refraction. Additionally, the system includes a waveguide layer on the substrate, wherein the waveguide has a second index of refraction different from the first index of refraction. Also, the waveguide layer includes one or more mode splitters that receive at least one of a first photon in a first mode and a second photon in a second mode through an input port and provide one of the first photon through a first output port and the second photon through a second output port. The waveguide layer also includes a mode converter coupled to the second output of a mode splitter, wherein the mode converter receives the second photon through a port and outputs the second photon in the first mode through the port.

    Apparatuses and methods for alkali spectroscopy

    公开(公告)号:US10823668B2

    公开(公告)日:2020-11-03

    申请号:US15961478

    申请日:2018-04-24

    Abstract: An apparatus is provided. The apparatus comprises a substrate; a low index of refraction region in or on the substrate; an optical waveguide; a cover; wherein at least a portion of the low index of refraction region and the optical waveguide are hermetically sealed under the cover; a chamber formed by the low index of refraction region and the cover; atoms; an environment, in the chamber, including the atoms and having a first index of refraction; a segment of the optical waveguide formed over the low index of refraction region and within the chamber; and wherein the segment has a second index of refraction which is substantially equal to the first index of refraction.

    Apparatuses and methods for low energy data modulation

    公开(公告)号:US10678072B2

    公开(公告)日:2020-06-09

    申请号:US15956610

    申请日:2018-04-18

    Abstract: A method is provided. The method comprises: injecting an optical carrier signal into an unbent optical waveguide between two reflectors, where the distance between two reflectors in the center of the two reflectors is substantially zero and the two reflectors undergo substantially a π phase shift where the two reflectors are adjacent; creating standing waves between the two reflectors in the center, and a single resonance due to constructive interference; applying a varying electric field across the unbent optical waveguide centered between two reflectors and extending a length less than or equal to a combined length of the two reflectors; and generating a modulated carrier signal at at least one of an input and an output of the unbent optical waveguide between the two reflectors.

    THREE-PUMP STIMULATED BRILLOUIN SCATTERING GYROSCOPE

    公开(公告)号:US20200141731A1

    公开(公告)日:2020-05-07

    申请号:US16179437

    申请日:2018-11-02

    Abstract: A stimulated Brillouin scattering (SBS) gyroscope comprises a resonator; a first laser in communication with the resonator and configured to emit a first optical signal propagating in a first direction, the first optical signal producing a first SBS signal counter-propagating in a second direction; a second laser in communication with the resonator and configured to emit a second optical signal propagating in the first direction, the second optical signal producing a second SBS signal counter-propagating in the second direction; a third laser in communication with the resonator and configured to emit a third optical signal propagating in the second direction, the third optical signal producing a third SBS signal counter-propagating in the first direction. At least one photodetector is coupled to the resonator and receives the SBS signals, which are combined in the photodetector to produce electrical signals that include rotational rate information encoded in frequencies of the electrical signals.

    ANTI-REFLECTIVE AND RESONANT WAVEGUIDE GRATING TO FREE-SPACE COUPLERS

    公开(公告)号:US20200026001A1

    公开(公告)日:2020-01-23

    申请号:US16041036

    申请日:2018-07-20

    Abstract: Free-space coupler devices are disclosed. In one embodiment, a free-space coupler device comprises a waveguide structure including a waveguide grating, and an out-of-plane coupler separated from and in optical communication with the waveguide grating. The waveguide grating and the out-of-plane coupler are separated by a distance that will yield an optical resonance at a desired operating frequency or wavelength of an optical signal, thereby maximizing a diffraction power of the optical signal at the out-of-plane coupler while minimizing a reflection power of the optical signal at the out-of-plane coupler.

    High-efficiency fiber-to-waveguide coupler

    公开(公告)号:US10534136B1

    公开(公告)日:2020-01-14

    申请号:US16223548

    申请日:2018-12-18

    Abstract: An optical coupler comprises a waveguide structure including a first waveguide layer having proximal and distal ends, the first waveguide layer including a first pair of waveguides that extend from the proximal end along a first portion, wherein the first pair of waveguides each widen along a second portion such that the first pair of waveguides merge into a single waveguide. A second waveguide layer is separated from the first waveguide layer, with the second waveguide layer having proximal and distal ends, the second waveguide layer including a second pair of waveguides that extend from the proximal end of the second waveguide layer along a first portion of the second waveguide layer, wherein the second pair of waveguides each narrow along a second portion of the second waveguide layer to separate distal tips. The waveguide structure matches an integrated photonics mode to a fiber mode supported by an optical fiber.

    Optical phased array with integrated secondary optics

    公开(公告)号:US10481328B1

    公开(公告)日:2019-11-19

    申请号:US16162044

    申请日:2018-10-16

    Abstract: An optical phased array comprises a substrate layer having a substantially planar surface, a plurality of emitters on the surface of the substrate, and at least one cladding layer over the emitters. A plurality of optics components coupled to the cladding layer is located a predetermined distance away from the emitters, with the optics components in optical communication with the emitters. The optics components comprise a first set of optics configured for angular correction of light beams emitted from the emitters, and a second set of optics separated from the first set of optics, the second set of optics configured for divergence enhancement of the light beams transmitted from the first set of optics. Alternatively, the optics components comprise a combined set of optics configured for angular correction of light beams emitted from the emitters, and for divergence enhancement of the light beams transmitted from the combined set of optics.

    BRILLOUIN GAIN SPECTRAL POSITION CONTROL OF CLADDINGS FOR TUNING ACOUSTO-OPTIC WAVEGUIDES

    公开(公告)号:US20190267770A1

    公开(公告)日:2019-08-29

    申请号:US16403205

    申请日:2019-05-03

    Abstract: A method of fabricating an acousto-optic waveguide that includes a waveguide cladding surrounding an optical core is disclosed. The method comprises providing a wafer substrate; depositing an initial amount of a first material over an upper surface of the wafer substrate to form a partial cladding layer; depositing a second material over the partial cladding layer to form an optical layer; removing portions of the second material of the optical layer to expose portions of the partial cladding layer and form an optical core comprising the remaining second material; and depositing an additional amount of the first material over the optical core and the exposed portions of the partial cladding layer to form a full cladding layer that surrounds the optical core. A relative concentration of components of the first material is adjusted to provide Brillouin gain spectral position control of the waveguide cladding to tune the acousto-optic waveguide.

    BRILLOUIN GAIN SPECTRAL POSITION CONTROL OF CLADDINGS FOR TUNING ACOUSTO-OPTIC WAVEGUIDES

    公开(公告)号:US20180375281A1

    公开(公告)日:2018-12-27

    申请号:US15630261

    申请日:2017-06-22

    Abstract: A method of fabricating an acousto-optic waveguide that includes a waveguide cladding surrounding an optical core is disclosed. The method comprises providing a wafer substrate; depositing an initial amount of a first material over an upper surface of the wafer substrate to form a partial cladding layer; depositing a second material over the partial cladding layer to form an optical layer; removing portions of the second material of the optical layer to expose portions of the partial cladding layer and form an optical core comprising the remaining second material; and depositing an additional amount of the first material over the optical core and the exposed portions of the partial cladding layer to form a full cladding layer that surrounds the optical core. A relative concentration of components of the first material is adjusted to provide Brillouin gain spectral position control of the waveguide cladding to tune the acousto-optic waveguide.

Patent Agency Ranking