Abstract:
A constant multiplier compiler model allows a modified canonical signed two's complement constant multiplier circuit design to be generated from a user specification of the desired constant. A netlist of a modified canonical signed two's complement constant multiplier circuit for computing a product of a multi-bit multiplicand and a multi-bit constant is automatically generated by modifying a netlist of a precursor signed two's complement constant multiplier circuit for computing a product of the multi-bit multiplicand and a multi-bit constant that is all ones. The number of zeros in the multi-bit constant is first maximized by converting the constant to modified canonical form. Then, for each zero in the multi-bit constant, a corresponding logical column of full adders is deleted and each output signal of each adder so deleted is logically connected to a corresponding output signal in a preceding logical column of adders. Two exceptions to the foregoing rule occur. In the case of a first logical column of adders having no preceding logical column of adders, each output signal of each adder deleted is logically connected to a bit of the multi-bit multiplicand. In the case of a logical row of adders receiving a most significant bit of the multi-bit multiplicand, each output signal of each adder deleted is logically connected to one of the most significant bit of the multi-bit multiplicand and logic zero. The method produces a minimum layout, minimizing silicon cost, and produces a high performance design with critical paths optimized in terms of time delay.
Abstract:
The disclosure provides a method and a device in a first node for wireless communication. The first node first monitors a first signaling and a second signaling in a first time-frequency resource set, then judges whether to transmit a first radio signal according to a monitoring result of the first signaling, and finally transmits the first radio signal in a second time-frequency resource set, when judging to transmit the first radio signal; wherein the second signaling is not detected in the first time-frequency resource set, a signaling format corresponding to the second signaling is used for scheduling of a data signal. Through designing the first signaling and the second signaling, the disclosure solves the problem of missing detection of a sidelink scheduling signaling in Vehicle-to-Everything (V2X) caused when a data receiver only feeds back incorrect reception, thereby improving the overall performance of the system.
Abstract:
The present disclosure discloses a method and device in UE and base station used for wireless communications. A UE transmits a first radio signal, the first radio signal indicating a first reference signal out of M reference signals; and monitors a first signaling in each of W time-frequency resource block(s). Herein, at least one reference signal of the M reference signals is transmitted by a first serving cell, and the first serving cell is not added by the UE; the UE assumes that a transmission antenna port of the first signaling is Quasi-Co-Located with a transmission antenna port of the first reference signal; W is a positive integer, and M is a positive integer greater than 1. Such method can be employed to avoid delay and service interruption brought about by cell handover.
Abstract:
The disclosure provides a method and a device in a User Equipment (UE) and a base station for wireless communication. The UE receives a first signaling, receives a first radio signal in a first time window, and then transmits a feedback on the first radio signal in a second time window. The first signaling is used for determining time-domain resources occupied by the first radio signal; a first time-domain deviation is a deviation in time domain between the second time window and the first time window; when the first signaling carries a first identifier, the first time-domain deviation is one of K1 first-type candidate deviation(s), and K1 is a positive integer; when the first signaling carries a second identifier, the first time-domain deviation is one of K2 second-type candidate deviation(s), and K2 is a positive integer.
Abstract:
A method and a device in a User Equipment (UE) and a base station for wireless communications are disclosed by the present disclosure. A first node receives T first-type radio signals; performs T access detections respectively on T sub-bands and transmits T second-type radio signals respectively in T time-frequency resource blocks; and performs Q energy detection(s) respectively in Q time sub-pool(s) on a first sub-band, through which Q detection value(s) is(are) obtained. The T sub-bands each comprise at least one same frequency point, or the T sub-bands belong to a same carrier; at least one of the T sub-bands is different from the first sub-band; the selection of the reference time-frequency resource block is related to at least one between the first sub-band and the reference sub-band; the first node is a base station, or the first node is a UE.
Abstract:
The present disclosure provides a method and device for wireless communication in a user equipment and a base station. The user equipment receives a first information, and transmits a first wireless signal in a first time domain resource of a first sub-band. The first information is used to indicate a first parameter; the first parameter is associated with one of L spatial parameter sets; the L spatial parameter sets are respectively in one-to-one corresponding to L time domain resources; the first time domain resource is one of the L time domain resources. The L time domain resources belong to a first time window; the first information is used to determine the first time domain resource from the L time domain resources; the first parameter is used to determine a transmitting antenna port group of the first wireless signal.
Abstract:
The present disclosure provides a method and a device in node used for wireless communication. The communication node first performs X first-type measurement(s) in a target time-frequency resource pool, and the X first-type measurement(s) is (are respectively) used for acquiring X first-type measurement value(s); performs a target second-type measurement, the target second-type measurement being used for acquiring a second-type measurement value; and then transmits a first radio signal. Herein, the X first-type measurement value(s) is(are) used for the target second-type measurement, and the target time-frequency resource pool is one of Q alternative time-frequency resource pools related to a Subcarrier Spacing (SCS) of subcarriers occupied by the first radio signal; there exist two of the Q alternative time-frequency resource pools that comprise different time-frequency resources.
Abstract:
The present disclosure provides a method and a device in nodes for wireless communication. A first node receives first control information, the first control information being used for indicating a first radio resource group, and the first control information being used for indicating a first priority; chooses a target radio resource from a target resource pool; and transmits a first radio signal in the target radio resource; the first radio signal corresponds to a second priority; if the second priority is lower than the first priority, the target resource pool is orthogonal with the first radio resource group. The method adopted in the present disclosure allows part of reserved resources to be released temporarily to meet abrupt service requirements, so as to achieve timely transmission of aperiodic and emergent service data, and thereby realizing efficient utilization of radio resources.
Abstract:
The disclosure provides a method and a device in a User Equipment (UE) and a base station for wireless communication. The UE receives a first signaling, receives a first radio signal in a first time window, and then transmits a feedback on the first radio signal in a second time window. The first signaling is used for determining time-domain resources occupied by the first radio signal; a first time-domain deviation is a deviation in time domain between the second time window and the first time window; when the first signaling carries a first identifier, the first time-domain deviation is one of K1 first-type candidate deviation(s), and K1 is a positive integer; when the first signaling carries a second identifier, the first time-domain deviation is one of K2 second-type candidate deviation(s), and K2 is a positive integer.
Abstract:
A method and a device in a communication node for wireless communications are disclosed in the present disclosure. The communication node first receives a first signaling; and then receives a first radio signal in K1 slots and receives a second radio signal in K2 slots; the first signaling is used to determine the K1 and the K2; a first TB is used to generate the first radio signal, while a second TB is used to generate the second radio signal, the first TB comprising a positive integer number of bit(s), and the second TB comprising a positive integer number of bit(s); the K1 slots are divided into X1 slot groups, while the K2 slots are divided into X2 slot groups, and positions of the X1 slot groups and the X2 slot groups are interleaved in time domain. The present disclosure can reduce power consumption and improve coverage performance.