Abstract:
The present invention concerns a slide device (200) for a sliding door (100), comprising a carriage (210), a slide seat (220) on at least part of which the carriage (210) can slide, and wherein the slide seat (220) comprises a transformation region (230) configured in such a way as to convert a potential energy into a force applied to the carriage (210), so as to cause the latter to slide.
Abstract:
A coach door of a vehicle is provided. The door includes a hinge assembly that has a first hinge hinged to a vehicle body and a second hinge hinged to the first hinge and engaged with a rear end of a rear door. An opening start device rotates the rear end of the rear door to the outside of the vehicle at an early stage of opening of the rear door and a closing end device rotates the rear end of the rear door to the inside of the vehicle at a last stage of closing of the rear door. A guide unit is configured to guide a front end of the rear door to move the front end of the rear door in a longitudinal direction of the vehicle at the initial stage of opening of the rear door and the last stage of closing of the rear door.
Abstract:
A trigger has an upper board and a lower board. The lower board is detachably mounted on the upper board and has an open slot and an elongate board. The open slot is formed through an end of the lower board, and the elongate board is formed on the middle of the open slot and extends to the end of the lower board. The free end of the elongate board is bent perpendicularly to the elongate board. The door track with the trigger includes two installation boards, and two ribs are formed on the two installation boards respectively and extend toward each other. The upper board is mounted on the top surfaces of the ribs of the installation boards, and the lower board is mounted on the bottom surfaces of the ribs. When the sliding door collides with the trigger, the trigger can be deformed and prevents the slider of the sliding door from being restricted by the trigger.
Abstract:
A door hinge having a damping function, comprising a housing, a first rotating shaft, a second rotating shaft, a U-shaped rotating shaft, a hinge cup, a linkage member, a torsion spring, a connector, a supporting structure, and a damping structure; one end of the linkage member is rotationally provided in the housing by means of the first rotating shaft, and the other end of the linkage member is rotationally connected to the hinge cup by means of one arm of the U-shaped rotating shaft; one end of the connector is rotationally provided in the housing by means of the second rotating shaft, and the other end of the connector is rotationally connected to the hinge cup by means of the other arm of the U-shaped rotating shaft; the torsion spring is fitted over the second rotating shaft.
Abstract:
A hinge device includes a first fixed tubular half-shell having a working chamber defining a longitudinal axis, a second tubular half-shell rotatable about the longitudinal axis, a pivot rotating unitarily with the latter which includes a single pass-through actuating member having a helical shape, a plunger member slidable along the longitudinal axis, and a tubular bushing having a pair of guide cam slots. A pin inserted within the pass-through actuating member is provided to allow the mutual engagement of the pivot and the bushing. The first tubular half-shell includes an end portion susceptible to rotatably support the pivot, the second tubular half-shell and the bushing are coaxially coupled to each other, and the bushing and the first tubular half-shell are mutually unitarily coupled.
Abstract:
A power-assisted door closer includes an output shaft, a driving mechanism operatively connected to the output shaft, a mechanical energy accumulator for storing closing energy for the door leaf and acting upon the driving mechanism, a motor/generator unit operatively connected to the output shaft and an electrical energy accumulator for storing an assisting energy for the door leaf and being electrically connected to the motor/generator unit.
Abstract:
Disclosed herein is an automatic closing apparatus for a sliding apparatus. The sliding apparatus comprises a fixed rail, a movable rail, and the automatic closing apparatus. The automatic closing apparatus includes a body, a slider, a housing, a damping unit, and an elastic body. The body is provided on the fixed rail and has an actuating space therein. The body includes: a guide wall that is provided in the actuating space and includes a curved guide part and a linear guide part; and a receiving space formed adjacent to the curved guide part. The slider is locked to or unlocked from a locking member of the movable rail and slides in an open or close direction under guide of the guide wall. The housing is coupled to the body. The damping unit is installed in the housing. The elastic body is fastened to the housing and the slider.
Abstract:
A door closer with an electric motor-assisted closing feature, that may generate its own power to assist in closing, and controls the speed of opening and closing of the door during generation is disclosed. Embodiments of the present disclosure are realized by a motorized door closer that electrically creates a latch boost force for a closing door. The door closer includes a motor disposed to operatively connect to a door so that the door will moved toward closed when the motor moves, and a position sensor to determine a position of the door. A processor is programmed to exert a closing force on the door in the latch boost region or when it otherwise detects that a motor assist is needed.
Abstract:
A snap hinge with damped closure is provided, including a first articulated quadrilateral and a second articulated quadrilateral which share a first lever and a second lever and are provided respectively with a plate for coupling to a first element and with a plate for fixing to a second element. The hinge is movable alternately between an open configuration and a closed configuration, in which the plates have different arrangements with respect to each other. At least one damping element is interposed at least between the first quadrilateral and the coupling plate or between the second quadrilateral and the fixing plate for damped transition from the open configuration to the closed configuration or vice versa.
Abstract:
A device for sliding door leaves with co-planar closure, particularly for furniture and the like, including a bracket system for connection to each one of the door leaves and with which a first pair of wheels is associated in a lower region.The device includes a second pair of wheels which are, together with the first pair of wheels, slideably engaged with the head respectively of a first guide and of a second guide which are T-shaped in cross-section, arc-shaped in plan view and the stem of which protrudes from the top of the piece of furniture.