Abstract:
A wireless power transmission method executed by a power transmitter comprising multi-coils, according to one embodiment of the present invention, comprises the steps of: detecting a second power receiver while transmitting power to a first power receiver; determining at least one primary coil adequate for power transmission; by using the determined at least one primary coil, determining whether the second power receiver supports a shared mode protocol; and if the second power receiver supports the shared mode protocol, transmitting power to the first and second power receivers according to the shared mode protocol, wherein the shared mode protocol may be a protocol for simultaneously managing information exchanges between the power transmitter and multiple power receivers.
Abstract:
A communication method of a wireless power receiver performing communication with a wireless power transmitter, includes transmitting control information to the wireless power transmitter at a time slot in a first cycle; receiving an ACK signal from the wireless power transmitter when the control information is transmitted without collision at the time slot in the first cycle; determining a position of the time slot from among a plurality of time slots within the first cycle in response to the received ACK signal; receiving, in a second cycle, a sync pattern which indicates that the time slot is allocated to the wireless power receiver; and performing communication with the wireless power transmitter using the allocated time slot in the second cycle.
Abstract:
A communication method of a wireless power receiver performing communication with a wireless power transmitter through a plurality of slots, the method includes receiving allocation of any one of the plurality of slots from the wireless power transmitter, receiving provision of at least one of the plurality of slots from the wireless power transmitter as locked slots subsequent to the allocation, and transmitting information associated with a configuration phase and information associated with a negotiation phase to the wireless power transmitter within the locked slots.
Abstract:
The present disclosure relates to a wireless power transfer method, a wireless power transfer apparatus, and a wireless charging system in a wireless power transfer field, and there is provided a communication method of a wireless power transmitter performing communication with at least one wireless power receiver through a plurality of slots, and the method may include allocating any one of the plurality of slots to any one of the at least one wireless power receiver, providing at least one of the plurality of slots to the any one wireless power receiver as locked slots subsequent to the allocation, and receiving information associated with a configuration phase and information associated with a negotiation phase from the any one wireless power receiver within the locked slots.
Abstract:
The present disclosure relates to a wireless power transmitter for performing communication with a wireless power receiver using a plurality of slots, and the wireless power transmitter may include a power conversion unit configured to transmit a wireless power signal to the wireless power receiver, and a power transmission control unit configured to perform communication with the wireless power receiver using the wireless power signal, wherein the power transmission control unit performs steps including receiving control information from the wireless power receiver within any one of the plurality of slots, transmitting an ACK signal to the wireless power receiver in response to the control information, and allocating the any one slot to the wireless power receiver to perform communication with the wireless power receiver using the any one slot when the ACK signal is received.
Abstract:
A wireless power transmitter is disclosed. The wireless power transmitter, which is capable of charging a plurality of wireless power receivers, includes: a plurality of coil cells; a main half-bridge inverter to which a main pulse signal is applied; a plurality of sub half-bridge inverters to which a first sub pulse signal or second sub pulse signal is applied; a current sensor that monitors the current through the coil cells; and a communications and control unit that controls the pulse signals applied to the main half-bridge inverter and sub half-bridge inverters and that communicates with the wireless power receivers, wherein the sub half-bridge inverters may be respectively connected to the coil cells.
Abstract:
The present disclosure relates to a wireless power transmission method, a wireless power transmission apparatus, and a wireless charging system in a wireless power transmission field, and there is provided a communication method of a wireless power transmitter capable of the transmission of power in a wireless manner, and the communication method may include receiving communication information indicating whether or not a second communication mode is available using a first communication mode from a wireless power receiver, determining whether or not communication in a second communication mode is available using the communication information, notifying either one of the first communication mode and second communication mode to the wireless power receiver based on the determination result, and performing communication with the wireless power receiver using a communication mode notified to the wireless power receiver.
Abstract:
Disclosed is a method of wirelessly transmitting, the method including: a selection phase for detecting each of power receivers and sending a digital ping to the each of power receivers; an introduction phase for receiving a request from the each of power receivers for a free slot; a configuration phase for providing a series of locked slots to the each of power receivers; a negotiation phase for receiving at least one negotiation data packet from the each of power receivers using the series of locked slots; a power transfer phase for transmitting power to the each of power receivers; and a renegotiation phase for returning to the negotiation phase, wherein the renegotiation phase is a phase for returning to the negotiation phase when a change of a charge status of at least one of the each of power receivers to which the power is transmitted is detected.