摘要:
An audio stream is divided into a plurality of audio object (AOB) files that are recorded having each been encrypted using a different encryption key. At least one piece of track management information (TKI) is provided corresponding to each track. Playlist information (PLI) assigns a playback position in a playback order to each track when a plurality of tracks are to be played back one after the other.
摘要:
An audio stream is divided into a plurality of audio object (AOB) files that are recorded having each been encrypted using a different encryption key. At least one piece of track management information (TKI) is provided corresponding to each track. Playlist information (PLI) assigns a playback position in a playback order to each track when a plurality of tracks are to be played back one after the other.
摘要:
An audio stream is divided into a plurality of audio object (AOB) files that are recorded having each been encrypted using a different encryption key. At least one piece of track management information (TKI) is provided corresponding to each track. Playlist information (PLI) assigns a playback position in a playback order to each track when a plurality of tracks are to be played back one after the other.
摘要:
In an overlapping head including a plurality of recording head chips overlapped to each other, a color shift can occur between a color recorded by an overlapping region and a color recorded by a non-overlapping region, which cannot be corrected by a density correction using head shading or the like. To correct such a color shift, a test pattern is recorded by the overlapping region and the non-overlapping region and colors of the recorded test pattern are measured. Color correction data to be used in correction of colors of an image to be recorded is generated based on a result of the measurement of the colors.
摘要:
In the present invention, a first calculation unit calculates, based on image data obtained by reading with a reading unit a plurality of patches formed on a printing medium by a plurality of nozzle regions constituting nozzle array of a printing head, respective color specification values of a plurality of correction regions corresponding to a plurality of nozzle regions constituting the nozzle array. Then, a target value setting unit sets, based on the calculated color specification values of the plurality of correction regions, a target color specification value of the patch. Further, a second calculation unit calculates a difference between each of the color specification values of the plurality of correction regions and the target color specification value as a correction amount. After that, based on the correction amount calculated, image data corresponding to an image printed by each of the plurality of nozzle regions are corrected.
摘要:
There is provided an image processing method in which in a full line type inkjet printer using a connecting head having an overlap region, even if a conveyance direction of a print medium is more or less inclined, a density change or degradation of graininess is not introduced. Therefore, an image data in a non-overlap region is distributed to a plurality of nozzle arrays such that ink is ejected from all the plurality of the nozzle arrays. On the other hand, a region where a print allowance rate changes in the overlap region is divided into plural regions, and the image data is distributed to the plurality of the nozzle arrays such that these regions are located to be shifted.
摘要:
When recording is performed in a pixel region by M (M is an integer equal to or larger than 2) passes with N (N is an integer equal to or larger than 2) recording element groups, density variation due to a deviation between recording positions of dots that are recorded by different passes is suppressed while a load of data processing is decreased.First, multivalued image data (24-1 to 24-2) corresponding to the M passes is generated from input image data, and the multivalued image data corresponding to the M passes is quantized to generate quantized data (26-1 to 26-2) corresponding to the M passes. Then, the quantized data corresponding to the M passes is divided into quantized data being complements of each other and corresponding to the N recording element groups. Accordingly, the quantized data (28-1 to 28-4) corresponding to the M passes for the N recording element groups is obtained. With this configuration, the density variation due to the deviation between the recording positions by the M passes can be suppressed. Also, since the number of pieces of data subjected to the quantization is small, the load of the quantization can be decreased.
摘要:
The image processing apparatus executes quantization processing of second multi-valued image data that corresponds to a second relative movement of a plurality of relative movements based on first multi-valued image data that corresponds to a first relative movement of the plurality of relative movements, and executes quantization processing of the first multi-valued image data based on the second multi-valued image data. This makes it possible to output a high-quality image having excellent robustness and reduced graininess by controlling the overlap rate of dots that are printed by the first relative movement and the dots that are printed by the second relative movement.
摘要:
When dividing multi-valued data and generating data for two-pass multi-pass printing, in addition to divided multi-valued data that are divided for each of the two passes, divided multi-valued data that is common to both of the two passes is generated. Moreover, quantized data of that common multi-valued data is reflected onto the quantized data for each pass. Furthermore, when generating quantized data, division ratios that are used when generating the common data by the multi-valued data division described above are set according to the image characteristics (whether or not the area is flesh color) of the multi-valued data. Thereby, it is possible to perform high-quality printing regardless of the image characteristics by taking a suitable balance between suppressing density unevenness and suppressing graininess.
摘要:
The present invention discloses an oligonucleotide which comprises a part or the entire sequence of the nucleotide sequence shown in SEQ ID NOS: 1-8, or a part or the entire sequence of a sequence complementary to the nucleotide sequence shown in SEQ ID NOS: 1-8, wherein the oligonucleotide is capable of hybridizing with a nucleotide sequence of Mycobacterium intracellulare gene; a primer or a probe for the detection of M. intracellulare, which comprises the oligonucleotide; and a method for detection of M. intracellulare using the primer and/or the probe. According to the detection method, false-positive results can be eliminated and detection of M. intracellulare can be carried out with higher accuracy, greater precision, and greater specificity compared to a conventional diagnostic method employing a cell culture assay or a PCR assay. The method also enables to quantify a microbial cell.
摘要翻译:本发明公开了一种寡核苷酸,其包含SEQ ID NO:1-8所示核苷酸序列的一部分或全部序列,或与SEQ ID NO:1所示核苷酸序列互补的序列的部分或全部序列 -8,其中所述寡核苷酸能够与胞内分枝杆菌基因的核苷酸序列杂交; 用于检测胞内分枝杆菌的引物或探针,其包含寡核苷酸; 以及使用引物和/或探针检测胞内分枝杆菌的方法。 根据检测方法,与使用细胞培养测定法或PCR测定法的常规诊断方法相比,可以消除假阳性结果并且可以以更高的准确度,更高的精度和更高的特异性进行胞内分枝杆菌的检测。 该方法还能够定量微生物细胞。