Abstract:
A paraffinic spray oil and a method of using the spray oil for controlling turfgrass pests is disclosed. The spray oil comprises paraffinic oil and a quick break emulsifier, which is formulated as an oil-in-water (O/W) emulsion for use. The paraffinic oil and emulsifier are present in a weight ratio ranging from about 95:5 to about 99.95:0.05, and preferably from about 98.5:1.5 to about 99.9:0.1. When applied to turfgrass, the O/W emulsion quickly releases the oil phase upon application to the turfgrass to contact pests thereon. When provided at sufficient paraffinic oil dosages, generally at least about 0.5 gal oil/acre and preferably in the range of about 0.5 gal/acre to about 60 gal/acre, the spray oil is effective in controlling a variety of turfgrass pests, particularly insect and fungal pests, with little or no phytotoxic effects. Further, use of the spray oil as indicated for controlling turfgrass pests also enhances the growth of turfgrass.
Abstract:
A method and device for in-line injecting of flocculent agent into a fluid flow of mature fine tailings (MFT). The method includes the steps of: a) providing a fluid flow of mature fine tailings to be treated along a given channel fluidly connected to the pipeline; b) providing a source of flocculating agent; and c) introducing flocculating agent inside the fluid flow of mature fine tailings via a plurality of injection outlets for injecting the flocculating agent into the fluid flow in a dispersed manner so as to increase an exposed surface area of the injected flocculating agent and thus increase a corresponding reaction with the mature fine tailings, for an improved flocculation of said mature fine tailings, and/or other desired end results. Also disclosed is a kit with corresponding components for assembling the in-line injection device to be connected in-line with the pipeline carrying the mature fine tailings to be treated.
Abstract:
A system for heating conveyors which extend outside a wash tunnel of a carwash utilizes concrete structural slabs with heating apparatus embedded in the slab near a top surface and supported adjacent the conveyor. The heating apparatus can be a hydronic system or an electric heating mat embedded in the slabs which prevents water on the slabs or the conveyor from freezing in low ambient temperature conditions.
Abstract:
An apparatus, process and system for treating a hydrocarbon feedstock having a specific gravity differential between components of the feedstock is disclosed and includes a treatment vessel having an inlet for receiving the feedstock. A primary separation container may be located in the treatment vessel to accumulate feedstock to cause a low specific gravity portion of the feedstock to separate and rise to an upper surface of the accumulated feedstock. A secondary separation container may be located in the treatment vessel to receive the collected low specific gravity portion from the primary separation container, to accumulate the collected low specific gravity portion to cause hydrocarbon products to separate and rise to an upper surface of the accumulated low specific gravity portion of the feedstock, producing a hydrocarbon product stream at a product outlet. The operating pressure of the treatment vessel may be regulated to remain within a desired range.
Abstract:
A separation process and system for extracting hydrocarbons from a mixture. In some embodiments, a process for separating a bitumen froth stream containing bitumen froth, water and fine solids into a bitumen enriched froth stream and a water and fine solids stream, comprises: (a) receiving the bitumen froth stream in a concentrator vessel, (b) distributing the bitumen froth stream in the concentrator vessel as a substantially uniform and generally horizontal flow of the bitumen froth stream at a first flow velocity, (c) slowing the bitumen froth stream to a second flow velocity, slower than the first flow velocity, in a separation region of the concentrator vessel to promote separation of the bitumen froth from the water and fine solids, and then (d) collecting a bitumen enriched froth stream and (e) collecting a separate water and fine solids stream. Related embodiments of systems and apparatus may also be provided.
Abstract:
A drilling fluid is provided which results in an enhanced rate of penetration, and more particularly, a drilling mud composition is provided with a reduced ester content which maintains an enhanced rate of penetration.
Abstract:
A sizing roller screen apparatus and method for processing an ore feed received at an inlet is disclosed. The ore feed includes sized ore portions and oversize ore portions. The apparatus includes a roller screen having a plurality of adjacent screening rollers supported to provide interstices therebetween for permitting passage of the sized ore portions between the adjacent screening rollers, the adjacent screening rollers being operably configured to rotate to cause a first sized ore portion to pass through the interstices while the ore feed is being transported along the roller screen. The apparatus also includes a sizing roller disposed generally above an opposing one of the plurality of adjacent screening rollers, the sizing roller being operably configured to rotate to fragment at least some of the oversize ore portions passing between the sizing roller and the opposing screening roller to produce a second sized ore portion, the second sized ore portion being sized for passage between the interstices.
Abstract:
A mined ore processing apparatus to process mined ores, such as oil sands ore, into granular material is disclosed. An ore processor bed receives the ore to be processed. The ore processor bed has a frame supporting several rotating elements each separately driven to provide independent rotation rate and direction from the other. The ore processing bed is operable as a sizing device to decimate mined ore supply into granular material and separating it from rocks and other large lump mineral materials found in situ. The ore processing bed may be oriented to provide an upward inclination, which, when combined with alternating rotating element rotation directions, provides a crushing action to the ore material to crush larger rock. Alternately, a rock crusher is also provided to disintegrate oversized materials.
Abstract:
A method of increasing a dwell time of a slurry facility at a given ore processing location by using a mobile oil sands mining system. The method involves coordinating the operation of at least two mining conveyors to facilitate mining at least one arc-shaped sector of ore that otherwise would not be within operational reach of the slurry facility at the ore processing location. The method increases the slurry facility's operational time at the ore processing location before relocation thereof is required to keep the slurry facility within operational reach of at least one receding mine face.
Abstract:
An extraction system and process for extracting bitumen from a slurry containing bitumen, solids and water. The system comprises a cyclone separation facility for separating the slurry into a solids component stream and a bitumen froth stream with the bitumen froth stream including water and fine solids. The bitumen froth stream is then delivered to a froth concentration facility for separating the bitumen froth stream into a final bitumen enriched froth stream, and a water and fine solids stream. The final bitumen enriched froth stream is suitable for further processing. The system of the present invention is preferably mobile so that the cyclone extraction facility and the froth concentration facility can move with the mine face at an oil sands mining site, however, it is also contemplated that the system can be retrofitted to existing fixed treatment facilities to improve the operational efficiency of such fixed facilities.