Abstract:
A spring for a suspension is described. The spring includes: a spring chamber divided into at least a primary portion and a secondary portion, and a fluid flow path coupled with and between the primary portion and the secondary portion. The fluid flow path includes a bypass mechanism, wherein the bypass mechanism is configured for automatically providing resistance within the fluid flow path in response to a compressed condition of the suspension.
Abstract:
A coil spring suspension designed for a handlebar-steered vehicle. The coil spring suspension generally includes a first tube, a coil spring, a shaft and a guide. A first end of the coil spring is disposed within the first tube and fixedly supported proximate a first end of the first tube. The coil spring extends beyond a second end of the first tube. The shaft fixedly supports a second end of the coil spring. The shaft and the first tube are slidably displaced relative to each other upon suspension loading to lengthwise compress the coil spring. The guide is disposed within the first tube and connected to the coil spring between the first and second ends of the coil spring. The guide is displaced with the coil spring under suspension loading and limiting lateral displacement of the coil spring.
Abstract:
A suspension damping device comprising an elongated tubular housing having a closed lower end for connection to an axle of a wheel and an open upper end having an elongated tube in sealed sliding engagement retained therein. A coil spring is located in the upper part of the tube and is retained between the upper end of the tube and a floating piston positioned in sealed sliding engagement in the tube. An upper and a lower oil chamber is formed in the tube and tubular housing below the piston. First and second passage means are provided between the first and second oil chambers with the second passage means having valve means which is responsive to lateral displacement of the wheel.