Abstract:
An image scanning apparatus with scan-starting point positioning function comprising a casing, a carriage and a calibration sheet is provided. Of which, the casing comprises a scan-platform used to place documents to be scanned, while the calibration sheet, which is fixed to the inner surface of the carriage and lies between the home line of the carriage and the upper wider margin of the scan-platform, comprises a hollowed-out mark completed through a punch-cutting manufacturing process. The mark can be defined using a predefined function set and has a reference point. After the carriage has moved to a scan line, the reference point can be located according to the intersection points between the mark scanned and the scan line accompanied by the predefined function set of the mark. Of which, the calibration sheet and the inner surface of the casing are of different levels of brightness.
Abstract:
An image reading apparatus includes: a document holder on which a document is placed; a document positioning member, wherein the document is positioned on the document holder according to the document positioning member; an image reading device for reading an image of the document positioned on the document holder; and a correcting device for correcting an inclination of the image read by the image reading device according to an inclination of the document positioning member. The inclination of the document positioning member is an inclination on the document holder for a primary scanning direction.
Abstract:
A device for quick and precise determination of a scan start point for an image scanner is disclosed. The image scanner includes a photo-processing device and a scanning platform for placing thereon a document to be scanned. The scanning platform is printed with a background region and a color block which are of different colors and located in front of the scan start point of the photo-processing device, and the color block is enclosed with the background region, and has a specified point therein being a predetermined shift to the scan start point along a specific direction. The photo-processing device moves a predetermined distance L0 from the home position to a pre-scan position overlapping with the color block, then moves a calculated distance L1 from the pre-scan position to the specified point, and moves another predetermined distance L2 from the specified point to the scan start point along the specific direction to start scanning. The distance L1 can be automatically adjusted to cover the installation error of the photo-processing device. For another image scanner disclosed herein, the movement of the distance L0 can be omitted by having the color blocks located at the home position which serves as the pre-scan position.
Abstract:
The present invention relates to the image correction device of the combination apparatus for eliminating the step difference of the image data by compensating the image step difference quantity occurring according to the environment or the transport or the assembly allowance of the carriage mechanism automatically when the data are read with the shuttle scanner module used as the reading means of the data, the image is corrected automatically within the system itself by correcting the wrong data with the image correction table and recording on the buffer by first reading the beginning data at the beginning driving of the system so the production time is reduced and the cost of the apparatus is lowered as the result of the reduction of the prim cost and the precise image is secured because the image is corrected automatically also under shocks in movement or the environment when a user buys and transports and uses it after it has been produced, therefore the reliability of the product improves.
Abstract:
An imaging device is disclosed wherein the imaging portion of the imaging device is integrated into an optical positioning system. The imaging device has a linear array of photodetector elements that are used to generate machine-readable image data representing an object being imaged. At least one two-dimensional photodetector segment comprising a two-dimensional array of photodetector elements is integrated into the linear array of photodetector elements. The two-dimensional photodetector segments serve the dual function of providing image data and positioning data.
Abstract:
A method for automatically aligning a charge coupled device of a scanner by using a software contained in the scanner instead of physically aligning the charge coupled device is disclosed. The scanner comprises a charge coupled device (CCD) having an array of optic sensors for converting a reflected line image into an analog signal array, an analog-to-digital (A/D) converter for converting the analog signal array into an image data array, and a test region having a positioning mark in it. The method comprises the following steps of: (1) generating an image data array which comprises the image of the test region in it by using the CCD and the A/D converter; (2) identifying the positioning mark from the image data array; and (3) setting an effective scanning range which defines the start and stop positions of valid image data within the image data array according to the identified positioning mark.
Abstract:
A deviation correcting system for a scanner including a central processing unit producing a control signal for reading out a correcting program for correcting a scanning deviation, and a test pattern, for printing the test pattern, for scanning the printed test pattern, and then for correcting a scanning deviation; a print driver producing a control signal for printing the test pattern produced from the central processing unit, feeding the test pattern back to a scanning position; a printing unit printing the test pattern and then feeding the test pattern back to the scanning position upon application of the control signal from the print driver; an image processing unit producing a control signal for scanning the test pattern upon application of the control signal from the central processing unit; and a shuttle scanner module scanning the test pattern and producing image data upon application of the control signal from the image processing unit.
Abstract:
An image scanner having an improved scanning quality is disclosed. Two different color blocks having an interface therebetween are provided on the document platform of the image scanner. The image pickup device passes by the color blocks prior to the document area so that color calibrations and/or error detection can be performed before the scanning operation is performed. By this way, the color data such as the brightness of the obtained image can be compensated, and the deflection rate and/or the amplification error of the image pickup device can be corrected.
Abstract:
An image reading unit reads an original image, one main scan line by one main scan line, in a sub-scan direction. A window setting unit sets a measuring window in a bit-map formation of image data obtained through the image reading unit, in a manner in which the measuring window moves in a predetermined manner so that the measuring window appropriately includes pixels of an oblique line image which is formed in the bit-map formation of image data as a result of being read through the image reading unit. A position error measuring unit processes image data defined by the measuring window, and, thus, measures an error of the oblique line image formed in the bit-map formation of obtained image data between a predetermined reference state and an actual reading state.
Abstract:
A system that ensures that documents are perfectly aligned before scanner paper feed is enabled. Subsequently, the paper drive is activated and the resulting scanned image does not have any annoying skew. This system is particularly effective with fast start scanners having a scanning speed over 200 mm per second. Sheet-fed scanners can take advantage of this Anti-Skew Auto-start system at a marginal cost. The method and the special tools to calibrate the Anti-Skew Auto-start system ensure repeatable performance.