Abstract:
A directional control valve system is provided in conjunction with a hydraulic actuator, using a meter-in flow control valve that is simple in structure to permit pressure fluid to be fed into a first and a second chamber of the hydraulic actuator. The directional control valve system includes a meter-in flow control valve 1 for establishing and blocking fluid communication of a pump port with an outlet port 12, a first and a second load checking valve 2 and 3 that is in fluid communication with the outlet port 12, and a meter-out flow control valve 4 for establishing fluid communication of one of a first and a second actuator port 72 and 74 at an output side of the first and second load checking valves 2 and 3 with a tank port 71, and has an arrangement that permits the first and second load checking valves 2 and 3 to be held in a closed state with pressure fluid. The system provides feeding a first and a second chamber 99a and 99b with pressure fluid from the first or second actuator port 72 or 74 notwithstanding a simple configuration of the meter-in flow control valve 1 to establish and block fluid communication between the outlet port 12 and the pump port.
Abstract:
A hydraulic control system for a jet aircraft engine has an electronic control that commands a pair of torque motors to ultimately control the position of each one of a plurality of two-position, "latching" hydraulic actuator valves. A first torque motor is operable with a three-position, on/off hydraulic valve. The second torque motor operates in conjunction with a second valve to control the linear position of the spool of a multiplexer selector valve. The multiplexer selector valve has a plurality of positions that the spool can be linear translatable to. At each position is located a pair of control ports to which are ultimately connected one side of each of a pair of corresponding hydraulic actuator valves. The actuator valves may comprise fuel or air valves. A selected fuel or air actuator valve is translated between one of its two positions by translating the spool of the multiplexer selector valve to the appropriate position and then porting high pressure hydraulic fluid to that actuator valve for a predetermined period of time. The control system can asynchronously chose any fuel or air actuator valve to translate, as necessary, at any point in time.
Abstract:
A method and system are provided for controlling a pressurized fluid such as nitrogen gas which may be initially stored at a pressure as high as 20,000 psi. The pressurized nitrogen gas may be utilized in high pressure gas systems such as in gas-assisted injection molding systems or low pressure gas systems such as robotic control and actuators. A valve assembly is utilized in the method and system and includes an electric proportioning device such as a pneumatic servovalve and a pair of pneumatic, fluidly-coupled valves which are piloted by the servovalve to regulate the pressure of the pressurized nitrogen gas. In the method and system, the servovalve operates in a closed loop fashion by utilizing feedback from a feedback device such as a pressure transducer. A controller in the closed loop is responsive to a pressure signal from the pressure transducer and a preset reference signal to provide an error control signal to the servovalve.
Abstract:
A hydraulic control system comprising a hydraulic actuator having opposed openings adapted to alternately function as inlets and outlets for moving the element of the actuator in opposite directions, a pump for supplying fluid to said actuator, a directional valve comprising pilot operated meter-in valves to which the fluid from the pump is supplied through first lines for controlling the direction of movement of the actuator, and a pilot operated meter-out valve associated with each opening of the actuator for controlling the flow out of said actuator. The pressure of fluid being supplied to the actuator by the meter-in valve is sensed and supplied to a line extending from the output of the meter-in valve. A valve is provided in this line to provide a force selectively on the meter-in valve opposing the movement of the meter-in valve by the pilot pressure. The valve may comprise either a modulating valve or a shut-off valve.
Abstract:
An improved hydraulic servo-valve including a spool (10, 10R, 10L) adapted to slidably move in a valve body (1) to change the direction of flow of a working liquid and vary a flow rate of the working liquid, nozzle back-pressure chambers (18, 18R, 18L) to which a pilot pressure is applied for displacing the spool (10, 10R, 10L), and a flapper mechanism comprising nozzles (19, 19R, 19L) and flappers (20, 20R, 20L) is disclosed. Static pressure bearings (14R, 14L, 141R, 141L, 142R, 142L) are formed at opposite ends of the spool (10, 10R, 10L). In addition, the hydraulic servo-valve is formed with passages extend from a pump port (P) to the nozzle back-pressure chambers (18, 18R, 18L) via the static pressure bearings (14R, 14L, 141R, 141L, 142R, 142L).
Abstract:
Two and three stage servovalves having a first stage comprising a torque-motor driven, double jet, flapper valve, extend the present art in dynamic response through the replacement of the present flapper valve inlet orifices with active flow controllers. The flow controllers hold the flow rate from the pressure supply substantially constant under varying supply pressure and under varying operating conditions of the flapper valve and of the second and third stages. The flow controllers increase the gain of differential pressure to flapper displacement, through which the flapper to nozzle null gap can be reduced which, in turn, further increases the gain of differential pressure to flapper displacement and reduces the total flapper stroke. The stroke reduction reduces the torque-motor centering spring force, through which the torque-motor limited differential pressure can be increased. These factors significantly extend the operating supply pressure range and extend the frequency band of second and third stages of multistage servovalves.
Abstract:
A hydraulic control system comprising a hydraulic actuator having opposed openings adapted to alternately function as inlets and outlets for moving the element of the actuator in opposite directions and a variable displacement pump with loading sensing control for supplying fluid to said actuator. A pilot operated spool type meter-in valve is provided to which the fluid from the pump is supplied and a pilot controller alternately supplies fluid at pilot pressure to the meter-in valve for controlling the direction and displacement of movement of the meter-in valve and the direction and velocity of the actuator. A pair of lines extends from the meter-in valve to the respective openings of the actuator and a pilot operated meter-out valve is associated with each line of the actuator for controlling the flow out of the actuator when that line to the actuator does not have pressure fluid from the pump applied thereto. Pressure of fluid in the line to the actuator, which does not have pressure fluid from the pump, is applied to the meter-in valve to apply a centering force which aids the pressure compensating flow forces to keep the flow constant.
Abstract:
Supply and waste diaphragm valves communicate with each of two load ports 26, 28 and all valves are controlled by a pilot valve 78 and a pressure reversing valve 74. In one form, the pilot valve 356 has a rocker arm valve member 366. The pilot valve 78 applies high or low fluid pressure to control chambers 48, 64 and the control faces of two main diaphragms 40, 46, and it applies the same pressure to a diaphragm 90 which actuates the reversing valve 74. The pressure reversing valve 74 applies a reverse pressure to the control chambers 56, 62 and the control faces of the other two main diaphragms 42, 44. The pressure reversing valve 74 is a pressure actuated, supply and waste type valve in which the pressure applied by the pilot valve actuates a pressure driven element. The pressure driven element may be a diaphragm 90 or bellows 100. A higher control pressure is obtained with a ram nozzle 66 directed into the supply fluid at a point of maximum flow velocity. Seat loading of the diaphragms may be created by positioning valve seats 260, 266 beyond the free positions of the diaphragms 252, 270.
Abstract:
A single lever pilot control system (10) controls the simultaneous operation of two actuators (16,18). A mechanism (48) holds a first control valve (20) in an actuated position in response to movement of the handle (29) along a first axis (44) while freeing the handle (29) to return to a neutral position. Further movement of the handle (29) along a different axis to operate the second actuator (18) does not override the automatic stopping of the first actuator (16). The mechanism (48) provides a more precise control of automatically stopping one actuator while simultaneously operating the second actuator.
Abstract:
A self-cycling valve including a main valve and an operator valve. The main valve comprises a body having an inlet port, an exhaust port, and two outlet ports, and valve elements for controlling communication between each outlet port and the inlet and exhaust ports. The operator valve has a valve member movable between two extreme positions for controlling operation of the valve elements of the main valve. In one extreme position of the valve member, one outlet port of the main valve communications with the inlet port and the other outlet port communicates with exhaust; in the other extreme position of the valve member, the outlet port connections are reversed. The valve member of the operator valve cycles between its extreme positions in response to fluid pressure levels at the outlet ports of the main valve. A spring-biased, pivoting detent urges the operator valve member into each of its extreme positions, the spring force being applied to the detent along a line transverse to the direction of movement of the valve member, so that the biasing force decreases during the movement of the valve member from each extreme position toward its midpoint of travel and increases during movement of the valve member from the midpoint of its travel to the other extreme position. Pistons at opposite ends of the operator valve member respond to fluid pressures at the outlet ports, respectively, for moving the valve member back and forth between its two extreme positions.