Abstract:
A method of signaling additional chroma QP offset values that are specific to quantization groups is provided, in which each quantization group explicitly specifies its own set of chroma QP offset values. Alternatively, a table of possible sets of chroma QP offset values is specified in the header area of the picture, and each quantization group uses an index to select an entry from the table for determining its own set of chroma QP offset values. The quantization group specific chroma QP offset values are then used to determine the chroma QP values for blocks within the quantization group in addition to chroma QP offset values already specified for higher levels of the video coding hierarchy.
Abstract:
Offset values, such as Sample Adaptive Offset (SAO) values in video coding standards such as the High Efficiency Video Coding standard (HEVC), may be improved by performing calculations and operations that improve the preciseness of these values without materially affecting the signal overhead needed to transmit the more precise values. Such calculations and operations may include applying a quantization factor to a video sample and at least some of its neighbors, comparing the quantized values, and classifying the video sample as a minimum, maximum, or one of various types of edges based on the comparison. Other sample range, offset mode, and/or offset precision parameters may be calculated and transmitted with metadata to improve the precision of offset values.
Abstract:
An encoder system may include an analyzer that analyzes a current image area in an input video to select a transform. A selectable residue transformer, controlled by the analyzer, may perform the selectable transform on a residue image generated from the current image area and a predicted current image area, to generate a transformed residue image. An encoder may encode the transformed residue image to generate output data. The analyzer controls the encoder to encode information to identify the selectable transform and to indicate that the selectable transform for the current image area is different from a transform of a previous image area of the input video. A decoder system may include components appropriate for decoding the output data from the encoder system.
Abstract:
In a communication system, parallel encoding and decoding of serially-coded data occurs in a manner that supports low latency communication. A plurality of data items may be coded as serially-coded data sequences and a transmission sequence may be built from them. An index table may be built having a plurality of entries representing respective start points of the serially-coded data sequences within the transmission sequence. The transmission sequence may be transmitted to a channel and, thereafter, the index table may be transmitted. Latencies otherwise involved in inserting an index table into the beginning of a transmission sequence may be avoided.
Abstract:
Disclosed is a method that includes receiving an image frame having a plurality of coded blocks, determining a prediction unit (PU) from the plurality of coded blocks, determining one or more motion compensation units arranged in an array within the PU, and applying a filter to one or more boundaries of the one or more motion compensation units. Also disclosed is a method that includes receiving a reference frame that includes a reference block, determining a timing for deblocking a current block, performing motion compensation on the reference frame to obtain a predicted frame that includes a predicted block, performing reconstruction on the predicted frame to obtain a reconstructed frame that includes a reconstructed PU, and applying, at the timing for deblocking the current block, a deblocking filter based on one or more parameters to the reference block, the predicted block, or the reconstructed PU.
Abstract:
A system comprises an encoder configured to compress video data using an in-loop noise generation process that generates noise in the compression loop at a sub-image portion level of granularity, such as at a block level. The encoder includes noise model and/or noise model input parameter information in an encoded bit stream. Also, a system includes a decoder configured to receive such a bit stream and decompress the video using an in-loop noise generation process that generates noise in the decompression loop at a sub-image portion level of granularity.
Abstract:
A system comprises an encoder configured to compress and encode data for a three-dimensional mesh using a video encoding technique. To compress the three-dimensional mesh, the encoder determines sub-meshes and for each sub-mesh: texture patches and geometry patches. Also the encoder determines patch connectivity information and patch texture coordinates for the texture patches and geometry patches. The texture patches and geometry patches are packed into video image frames and encoded using a video codec. Additionally, the encoder determines boundary stitching information for the sub-meshes. A decoder receives a bit stream as generated by the encoder and reconstructs the three-dimensional mesh.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for reducing a quantity of buffers for a video codec. One of the methods includes determining, from a plurality of prediction modes, a prediction mode for data that represents frame data in a frame; in response to determining the prediction mode, selecting, using the prediction mode, one or more buffers from a plurality of buffers, each buffer of which is for a prediction mode from the plurality of prediction modes, a first quantity of buffers in the plurality of buffers being less than a second quantity of prediction modes in the plurality of prediction modes; retrieving, from each of the one or more buffers, historical data for the frame data; and in response to retrieving the historical data, generating, using the historical data, updated data for the frame data in the frame of the video sequence.
Abstract:
A method of signaling additional chroma QP offset values that are specific to quantization groups is provided, in which each quantization group explicitly specifies its own set of chroma QP offset values. Alternatively, a table of possible sets of chroma QP offset values is specified in the header area of the picture, and each quantization group uses an index to select an entry from the table for determining its own set of chroma QP offset values. The quantization group specific chroma QP offset values are then used to determine the chroma QP values for blocks within the quantization group in addition to chroma QP offset values already specified for higher levels of the video coding hierarchy.
Abstract:
Techniques for multi-view video streaming are described in the present disclosure, wherein a viewport prediction may be employed at a client-end based on analysis of pre-fetched media item data and ancillary information. A streaming method may first prefetch a portion of content of a multi-view media item. The method may next identify a salient region from the prefetched content and may then download additional content of the media item that corresponds to the identified salient region.