-
公开(公告)号:US20220404829A1
公开(公告)日:2022-12-22
申请号:US17352777
申请日:2021-06-21
Applicant: NVIDIA Corporation
Inventor: David Nister , Yizhou Wang , Jaikrishna Soundararajan , Sachit Kadle
Abstract: To determine a path through a pose configuration space, trajectories of poses may be evaluated in parallel based at least on translating the trajectories along at least one axis of the pose configuration space (e.g., an orientation axis). A trajectory may include at least a portion of a turn having a fixed turn radius. Turns or turn portions that have the same turn radius and initial orientation can be translatively shifted along and processed in parallel along the orientation axis as they are translated copies of each other, but with different starting points. Trajectories may be evaluated based at least on processing variables used to evaluate reachability as bit vectors with threads effectively performing large vector operations in synchronization. A parallel reduction pattern may be used to account for dependencies that may exist between sections of a trajectory for evaluating reachability, allowing for the sections to be processed in parallel.
-
公开(公告)号:US11436837B2
公开(公告)日:2022-09-06
申请号:US16911007
申请日:2020-06-24
Applicant: NVIDIA Corporation
Inventor: Trung Pham , Berta Rodriguez Hervas , Minwoo Park , David Nister , Neda Cvijetic
IPC: G06V20/56 , G06N3/04 , G06T5/00 , G06N3/08 , G05B13/02 , G06T3/40 , G06T7/11 , G06T11/20 , G06K9/62 , G06V30/262
Abstract: In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersection contention areas in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute outputs—such as signed distance functions—that may correspond to locations of boundaries delineating intersection contention areas. The signed distance functions may be decoded and/or post-processed to determine instance segmentation masks representing locations and classifications of intersection areas or regions. The locations of the intersections areas or regions may be generated in image-space and converted to world-space coordinates to aid an autonomous or semi-autonomous vehicle in navigating intersections according to rules of the road, traffic priority considerations, and/or the like.
-
163.
公开(公告)号:US20220277193A1
公开(公告)日:2022-09-01
申请号:US17187350
申请日:2021-02-26
Applicant: NVIDIA Corporation
Inventor: Tilman Wekel , Joachim Pehserl , Jacob Meyer , Jake Guza , Anton Mitrokhin , Richard Whitcomb , Marco Scoffier , David Nister , Grant Monroe
Abstract: An annotation pipeline may be used to produce 2D and/or 3D ground truth data for deep neural networks, such as autonomous or semi-autonomous vehicle perception networks. Initially, sensor data may be captured with different types of sensors and synchronized to align frames of sensor data that represent a similar world state. The aligned frames may be sampled and packaged into a sequence of annotation scenes to be annotated. An annotation project may be decomposed into modular tasks and encoded into a labeling tool, which assigns tasks to labelers and arranges the order of inputs using a wizard that steps through the tasks. During the tasks, each type of sensor data in an annotation scene may be simultaneously presented, and information may be projected across sensor modalities to provide useful contextual information. After all annotation tasks have been completed, the resulting ground truth data may be exported in any suitable format.
-
公开(公告)号:US20210342609A1
公开(公告)日:2021-11-04
申请号:US17377064
申请日:2021-07-15
Applicant: NVIDIA Corporation
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20210241005A1
公开(公告)日:2021-08-05
申请号:US17234487
申请日:2021-04-19
Applicant: NVIDIA Corporation
Inventor: Josh Abbott , Miguel Sainz Serra , Zhaoting Ye , David Nister
Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
-
公开(公告)号:US20210241004A1
公开(公告)日:2021-08-05
申请号:US17234475
申请日:2021-04-19
Applicant: NVIDIA Corporation
Inventor: Josh Abbott , Miguel Sainz Serra , Zhaoting Ye , David Nister
Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
-
167.
公开(公告)号:US20210063578A1
公开(公告)日:2021-03-04
申请号:US17005788
申请日:2020-08-28
Applicant: NVIDIA Corporation
Inventor: Tilman Wekel , Sangmin Oh , David Nister , Joachim Pehserl , Neda Cvijetic , Ibrahim Eden
IPC: G01S17/894 , G01S17/931 , G01S7/481
Abstract: In various examples, a deep neural network (DNN) may be used to detect and classify animate objects and/or parts of an environment. The DNN may be trained using camera-to-LiDAR cross injection to generate reliable ground truth data for LiDAR range images. For example, annotations generated in the image domain may be propagated to the LiDAR domain to increase the accuracy of the ground truth data in the LiDAR domain—e.g., without requiring manual annotation in the LiDAR domain. Once trained, the DNN may output instance segmentation masks, class segmentation masks, and/or bounding shape proposals corresponding to two-dimensional (2D) LiDAR range images, and the outputs may be fused together to project the outputs into three-dimensional (3D) LiDAR point clouds. This 2D and/or 3D information output by the DNN may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20210063199A1
公开(公告)日:2021-03-04
申请号:US17008100
申请日:2020-08-31
Applicant: NVIDIA Corporation
Inventor: Amir Akbarzadeh , David Nister , Ruchi Bhargava , Birgit Henke , Ivana Stojanovic , Yu Sheng
Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
-
169.
公开(公告)号:US20210042535A1
公开(公告)日:2021-02-11
申请号:US16535440
申请日:2019-08-08
Applicant: NVIDIA Corporation
Inventor: Josh Abbott , Miguel Sainz Serra , Zhaoting Ye , David Nister
Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
-
公开(公告)号:US20200341466A1
公开(公告)日:2020-10-29
申请号:US16848102
申请日:2020-04-14
Applicant: NVIDIA Corporation
Inventor: Trung Pham , Hang Dou , Berta Rodriguez Hervas , Minwoo Park , Neda Cvijetic , David Nister
Abstract: In various examples, live perception from sensors of a vehicle may be leveraged to generate potential paths for the vehicle to navigate an intersection in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs—such as heat maps corresponding to key points associated with the intersection, vector fields corresponding to directionality, heading, and offsets with respect to lanes, intensity maps corresponding to widths of lanes, and/or classifications corresponding to line segments of the intersection. The outputs may be decoded and/or otherwise post-processed to reconstruct an intersection—or key points corresponding thereto—and to determine proposed or potential paths for navigating the vehicle through the intersection.
-
-
-
-
-
-
-
-
-