-
公开(公告)号:US12164059B2
公开(公告)日:2024-12-10
申请号:US17377064
申请日:2021-07-15
Applicant: NVIDIA Corporation
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
IPC: G01S7/48 , B60W60/00 , G01S17/89 , G01S17/931 , G05D1/00 , G06N3/045 , G06T19/00 , G06V10/10 , G06V10/25 , G06V10/26 , G06V10/44 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06V20/56 , G06V20/58
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US12080078B2
公开(公告)日:2024-09-03
申请号:US17895940
申请日:2022-08-25
Applicant: NVIDIA Corporation
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
CPC classification number: G06V20/584 , B60W60/0011 , B60W60/0016 , B60W60/0027 , G01S17/89 , G01S17/931 , G05D1/0088 , G06N3/045 , G06T19/006 , G06V20/58 , B60W2420/403 , G06T2207/10028 , G06T2207/20081 , G06T2207/20084 , G06T2207/30261
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US12072443B2
公开(公告)日:2024-08-27
申请号:US17377053
申请日:2021-07-15
Applicant: NVIDIA Corporation
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
IPC: G01S7/48 , B60W60/00 , G01S17/89 , G01S17/931 , G05D1/00 , G06N3/045 , G06T19/00 , G06V10/25 , G06V10/26 , G06V10/44 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06V20/56 , G06V20/58 , G06V10/10
CPC classification number: G01S7/4802 , B60W60/0011 , B60W60/0016 , B60W60/0027 , G01S17/89 , G01S17/931 , G05D1/0088 , G06N3/045 , G06T19/006 , G06V10/25 , G06V10/26 , G06V10/454 , G06V10/764 , G06V10/774 , G06V10/803 , G06V10/82 , G06V20/56 , G06V20/58 , G06V20/584 , B60W2420/403 , G06T2207/10028 , G06T2207/20081 , G06T2207/20084 , G06T2207/30261 , G06V10/16
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20240273919A1
公开(公告)日:2024-08-15
申请号:US18647415
申请日:2024-04-26
Applicant: NVIDIA CORPORATION
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
CPC classification number: G06V20/584 , B60W60/0011 , B60W60/0016 , B60W60/0027 , G01S17/89 , G01S17/931 , G06N3/045 , G06T19/006 , G06V20/58 , B60W2420/403 , G06T2207/10028 , G06T2207/20081 , G06T2207/20084 , G06T2207/30261
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US11915493B2
公开(公告)日:2024-02-27
申请号:US17895940
申请日:2022-08-25
Applicant: NVIDIA Corporation
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
CPC classification number: G06V20/584 , B60W60/0011 , B60W60/0016 , B60W60/0027 , G01S17/89 , G01S17/931 , G05D1/0088 , G06N3/045 , G06T19/006 , G06V20/58 , B60W2420/403 , G06T2207/10028 , G06T2207/20081 , G06T2207/20084 , G06T2207/30261
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20210026355A1
公开(公告)日:2021-01-28
申请号:US16938706
申请日:2020-07-24
Applicant: NVIDIA Corporation
Inventor: Ke Chen , Nikolai Smolyanskiy , Alexey Kamenev , Ryan Oldja , Tilman Wekel , David Nister , Joachim Pehserl , Ibrahim Eden , Sangmin Oh , Ruchi Bhargava
Abstract: A deep neural network(s) (DNN) may be used to perform panoptic segmentation by performing pixel-level class and instance segmentation of a scene using a single pass of the DNN. Generally, one or more images and/or other sensor data may be stitched together, stacked, and/or combined, and fed into a DNN that includes a common trunk and several heads that predict different outputs. The DNN may include a class confidence head that predicts a confidence map representing pixels that belong to particular classes, an instance regression head that predicts object instance data for detected objects, an instance clustering head that predicts a confidence map of pixels that belong to particular instances, and/or a depth head that predicts range values. These outputs may be decoded to identify bounding shapes, class labels, instance labels, and/or range values for detected objects, and used to enable safe path planning and control of an autonomous vehicle.
-
公开(公告)号:US20240410981A1
公开(公告)日:2024-12-12
申请号:US18810728
申请日:2024-08-21
Applicant: NVIDIA CORPORATION
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
IPC: G01S7/48 , B60W60/00 , G01S17/89 , G01S17/931 , G05D1/81 , G06N3/045 , G06T19/00 , G06V10/10 , G06V10/25 , G06V10/26 , G06V10/44 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06V20/56 , G06V20/58
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20210150230A1
公开(公告)日:2021-05-20
申请号:US16915346
申请日:2020-06-29
Applicant: NVIDIA Corporation
Inventor: Nikolai Smolyanskiy , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20240029447A1
公开(公告)日:2024-01-25
申请号:US18482183
申请日:2023-10-06
Applicant: NVIDIA Corporation
Inventor: Nikolai SMOLYANSKIY , Ryan Oldja , Ke Chen , Alexander Popov , Joachim Pehserl , Ibrahim Eden , Tilman Wekel , David Wehr , Ruchi Bhargava , David Nister
CPC classification number: G06V20/584 , G01S17/931 , B60W60/0016 , B60W60/0027 , B60W60/0011 , G01S17/89 , G05D1/0088 , G06T19/006 , G06V20/58 , G06N3/045 , B60W2420/403 , G06T2207/10028 , G06T2207/20081 , G06T2207/20084 , G06T2207/30261
Abstract: A deep neural network(s) (DNN) may be used to detect objects from sensor data of a three dimensional (3D) environment. For example, a multi-view perception DNN may include multiple constituent DNNs or stages chained together that sequentially process different views of the 3D environment. An example DNN may include a first stage that performs class segmentation in a first view (e.g., perspective view) and a second stage that performs class segmentation and/or regresses instance geometry in a second view (e.g., top-down). The DNN outputs may be processed to generate 2D and/or 3D bounding boxes and class labels for detected objects in the 3D environment. As such, the techniques described herein may be used to detect and classify animate objects and/or parts of an environment, and these detections and classifications may be provided to an autonomous vehicle drive stack to enable safe planning and control of the autonomous vehicle.
-
公开(公告)号:US20230281847A1
公开(公告)日:2023-09-07
申请号:US17592096
申请日:2022-02-03
Applicant: NVIDIA Corporation
Inventor: Yiran Zhong , Charles Loop , Nikolai Smolyanskiy , Ke Chen , Stan Birchfield , Alexander Popov
CPC classification number: G06T7/55 , G06T7/70 , G06V10/462 , G06T2207/20081 , G06T2207/30252
Abstract: In various examples, methods and systems are provided for estimating depth values for images (e.g., from a monocular sequence). Disclosed approaches may define a search space of potential pixel matches between two images using one or more depth hypothesis planes based at least on a camera pose associated with one or more cameras used to generate the images. A machine learning model(s) may use this search space to predict likelihoods of correspondence between one or more pixels in the images. The predicted likelihoods may be used to compute depth values for one or more of the images. The predicted depth values may be transmitted and used by a machine to perform one or more operations.
-
-
-
-
-
-
-
-
-