Abstract:
Optical fiber connectors for MT/MPO type ferrule assemblies are disclosed, having an overall connector length less than about 32 mm, for example, an overall length of about 18.5 mm for non-reinforced optical fiber cables, and an overall length of about 23.5 mm for reinforced optical fiber cables. In one embodiment, a connector comprises a ferrule assembly, and a housing coupled to the ferrule assembly and configured to couple to an adapter corresponding to the ferrule assembly. The connector further includes a lock coupled to the housing and configured to rotate so as to lock and unlock the housing from said adapter. An interface member coupled to the housing may include a stop configured to limit rotation of the lock. The interface member may include a reinforcement portion for reinforcing optical fiber cables.
Abstract:
Devices and methods for connecting optical fibers are provided. In some embodiments, connectors and adaptors for two-fiber mechanical transfer type ferrules are disclosed. In some embodiments, MT connectors, such as simplex, duplex, and quad micro-MT adaptors are disclosed. In some embodiments, MT adaptors, such as simplex, duplex, and quad adaptors are disclosed. In some embodiments, optical fiber cables that modularly coupled with at least one optical fiber connector, adaptor, and other optical fiber cable using a remote release are disclosed.
Abstract:
A multi-polarity fiber optic adapter is configured to provide a plurality of connector polarity options. The adapter includes a housing and a plurality of ports, each port configured to receive and establish an optical connection with a ferrule of a fiber optic connector. The adapter further includes a plurality of first-polarity connector clip assemblies positioned within the housing such that, when the fiber optic connector is inserted into the adapter in a first position, the fiber optic connector is engaged with the first-polarity connector clip assemblies, thereby establishing a first-polarity connection. The adapter also includes a plurality of second-polarity connector clip assemblies positioned within the housing such that, when the fiber optic connector is inserted into the adapter in a second position, the fiber optic connector is engaged with the plurality of second-polarity connector clip assemblies, thereby establishing a second-polarity connection.
Abstract:
A crimp connector is disclosed for enhancing pull-retention of a fiber optic cable in a fiber optic connector assembly housing. The connector has a flange for engaging with the housing and crimp member for engaging with the cable.
Abstract:
A hybrid optical fiber adapter comprises a first adapter end configured to receive a first optical fiber connector, and a second adapter end configured to receive a second optical fiber connector of a different type from the first optical fiber connector. The hybrid adapter further comprises a spring configured to couple to the second adapter end such that the second optical fiber connector received into the second adapter end is disposed between the spring and the second adapter end, so as to allow floating of the second optical fiber connector. In one embodiment, the first optical fiber connector is an LC connector and the second optical fiber connector is a micro connector. The hybrid adapter may be coupled to a module such that the second adapter end protrudes into the module, requiring less space inside the module compared to conventional hybrid adapters, without sacrificing optical performance.
Abstract:
Various connector housings for securing an optical cable, as well as methods of use and manufacture thereof are disclosed. A single-piece unitary connector housing body may include a first opening formed in a first end of the housing body, a second opening formed in a second end of the housing body, a bore through the housing body extending from the first opening to the second opening, and a back post surrounding the second opening. The first opening may be configured to receive a terminating optical cable and the second opening may be configured to receive a fiber optic cable. The back post may extend from the second opening in a longitudinal direction and may include a plurality of protrusions thereon. A length of the back post may have a concave shape.
Abstract:
An adapter for mating optical fiber connectors may include an internal configuration that essentially holds the ferrules of the connectors in alignment when a force is applied to the connector in a sideways direction. An internal plate may be provided to essentially prevent displacement of the mating ends of the ferrules with respect to the adapter housing and one another.
Abstract:
Communication device connection assemblies are described. The sealable connection assemblies are configured to provide water-tight connections for various data transmission elements, including cables, network devices, and computing devices. The connection assemblies may be used for various data transmission protocols, such as fiber optic connections. A compression element of the connection assembly may be configured to engage and compress a sealing element against a communication cable extending through the sealable connection assembly when a tension element is coupled to the inner body, thereby forming a seal between the sealable element and the communication cable. The connection assemblies may include a retainer body configured to form a grip or retention force with a communication cable sufficient to reduce and/or eliminate any forces on the communication cable (i.e., bending and/or straight pull forces) from being transferred to and/or otherwise effecting other components of the connection assembly, such as sealing elements thereof.
Abstract:
An optical fiber connector including a connector housing having a front portion and a rear portion is disclosed. A ferrule is disposed in the connector housing such that it projects from the front portion of the connector housing. The rear portion of the connector housing includes a first channel configured to receive an optical fiber of an optical cable and to couple the optical fiber to the ferrule, and a second channel configured to receive a strength member of the optical cable. The optical fiber connector may be an ingress protected optical fiber connector, and may have an outside diameter less than about 15.8 mm, such as about 14 mm.
Abstract:
In one aspect the present disclosure provides a latching connector. The latching connector comprises a housing that is configured to engage with a mating connector along a coupling axis. The housing includes a lever connected to the housing. The lever is configured to selectively disengage the latching connector from the mating connector. The housing further includes an extending member connected to the lever.