Abstract:
Fibrous structures that exhibit a Geometric Mean Elongation of greater than 15.8% as measured according to the Elongation Test Method are provided.
Abstract:
A method for producing a roller used for manufacturing a retarder film is provided. The method includes providing the roller having a roller surface; providing an embossing tool having an embossing end and embossing the roller surface with the embossing tool. The embossing end has a plurality of first microgroove structures and second microgroove structures. The first and second micro-groove structures are both parallel structures. Each one of the first microgroove structures is symmetric to each one of the second microgroove structures with respect to a symmetry line. An included angle of the symmetry line between each first micro-groove structure and that between each second micro-groove structure are 45±8 degrees.
Abstract:
An object of the present invention is to provide an embossed crepe paper which can clearly be formed into fine embossed shapes, and is excellent in the fluffy feel and therefore excellent in such as absorbency for fats. As a means of achieving this object, the method for manufacturing an embossed crepe paper, according to the present invention, is a method for manufacturing an embossed crepe paper comprising a step of embossing a raw crepe paper, wherein: a raw paper having a basis weight of 6 to 28 g/m2 is used as the raw crepe paper; and the embossing step includes the steps of: (a) supplying the raw crepe paper with water in an amount of 0.1 to 100 weight % based on the basis weight to thereby put the raw crepe paper in a wet condition; (b) embossing the wet-conditioned raw crepe paper; and (c) drying the embossed wet-conditioned raw crepe paper.
Abstract:
An embossing system for embossing and perforating at least a portion of a web is provided comprising a first embossing roll having embossing elements and at least a second embossing roll having embossing elements, wherein the elements of the first and second embossing rolls define perforate nips for embossing and perforating the web and wherein at least a predominate number of the perforate nips are substantially oriented in the cross-machine direction. Moreover, substantially all of the nips defined by the embossing elements of the first and second embossing rolls can be substantially oriented in the cross-machine direction. Further, the cross-machine embossing elements are at an angle of about 85° to 95° from the machine direction.
Abstract:
An apparatus for embossing a web substrate is disclosed. The apparatus has a pattern roll, at least two rolls juxtaposed in an axially parallel relationship with the pattern roll, and a continuous belt disposed about the at least two rolls. The pattern roll has a circumference and an embossing pattern disposed upon a surface thereof. The continuous belt has a circumferential axis generally corresponding to the surface of said pattern roll. The continuous belt is disposed upon at least a portion of the circumference of the pattern roll and forms a circumferentially elongate nip therebetween. The pattern roll and the continuous belt are adapted to receive the web substrate at the elongate nip. The pattern roll and the continuous belt emboss the web substrate while the web substrate is disposed between the pattern roll and the continuous belt.
Abstract:
A process for manufacturing a multi-ply paper product is disclosed. The process includes the steps of: 1. Providing a web substrate; 2. Providing a pattern roll; 3. Providing an anvil roll having a hardness of less than about 40 P&J; 4. Providing an embossing roll having a hardness of greater than about 40 P&J; 5. Juxtaposing the anvil roll and the pattern roll in an axially parallel relationship to form a first nip therebetween; 6. Juxtaposing the embossing roll and the pattern roll in an axially parallel relationship to form a second nip therebetween; 7. Forwarding the web substrate through the first nip such that portions of the web substrate are embossed at the first nip to provide an embossed first paper web; and, 8. Forwarding the embossed first paper web through the second nip so that the embossed portions of the first paper web are further embossed in registration with the embossed portions of the first paper web.
Abstract:
An assembly is disclosed. The assembly includes an embossing device including a blank portion workpiece including a plurality of layers, wherein the blank portion workpiece is separated to include a first blank portion and a second blank portion, wherein each of the first and second blank portions include portions of at least two layers of the plurality of layers; and a blank portion retainer including a first flap and a second flap, wherein the first flap and the second flap are connected by a member consisting of a hinge, wherein the hinge and the first flap and the second flap define a folder, wherein each of the first and second flaps define an inner surface and an outer surface, wherein the first blank portion is attached to the inner surface of the first flap, wherein the second blank portion is attached to the inner surface of the second flap
Abstract:
The sheet of tissue paper includes at least one first embossed zone (A1, A2) having protrusions on a surface corresponding to alveoles on the other. The alveoles have a substantially polygonal base and the sheet includes at least one second, unembossed zone (B). In the invention, the alveoles 101′, 102′ are configured along at least one array, the mutually facing sides of two adjacent alveoles define a bridge (P) having rectilinear or substantially rectilinear edges of length L which is larger than its greatest width D, one or several bridges connected to each other subtending a path preferably between two second unembossed zones (B) which are separated by at least one first, embossed zone (A1, A2). The invention also relates to a cylinder embossing such a sheet.
Abstract:
A method of embossing an absorbent web with a machine direction undulatory structure is described. The web has a plurality of ridges extending in its machine direction occurring at a frequency, F, across the web and the method includes providing the web to an embossing station where the web is embossed between a first and second embossing roll, each of which rolls may be provided with a plurality of embossing elements configured to define a plurality of embossing nips. At least a portion of the embossing nips are substantially oriented in a cross-machine direction with respect to the web and have a cross direction length, L. The product F×L is from about 0.1 to about 5.
Abstract:
The present invention relates to processes for producing a deep-nested embossed paper products. The invention relates to a process for producing a deep-nested embossed paper products comprising one or more plies of paper where the resulting embossed ply or plies of paper comprise a plurality of embossments having an average embossment height of at least about 650 μm and have a high finished product wet burst strength relative to the unembossed wet strength. The present invention relates to a process for producing deep-nested embossed paper products comprising the steps of a) delivering one or more plies of paper to a deep-nested embossing process, b) conditioning the one or more plies of paper, wherein the conditioning step comprises heating the one or more plies of paper, adding moisture to the one or more plies of paper, or both heating and adding moisture to the one or more plies of paper, and c) embossing the one or more plies of the paper where the resulting embossed ply or plies of paper comprise a plurality of embossments having an average embossment height of at least about 650 μm.