Abstract:
An AC type plasma display panel is designed so as to have the relationships of Wb>Wg>Wr and Db>Dg>Dr, where Wb, Wg and Wr denote the widths of blue, green and red discharge cells and Db, Dg and Dr denote the widths of address electrodes (15b, 15g and 15r) corresponding to respective colors. As a result, it is possible to adjust the electric charge stored in the discharge cells due to a write discharge according to colors, thereby making complete lighting write voltages of the discharge cells uniform. This achieves the AC type plasma display panel with an excellent display quality that has less occurrence of erroneous discharge and discharge flicker and an improved white display quality.
Abstract:
This invention is a method of forming ribs of a plasma display panel by transfer-printing a glass paste on a glass substrate. The method comprises; forming a recess having a configuration corresponding to ribs arranged in parallel with each other and a joining element joining the ribs, filling the recess with the glass paste, and starting transfer-printing the glass paste on the glass substrate from a portion of the glass paste corresponding to the joining element filled in the recess. The method ensures that the glass paste comes off substantially completely from within the recess as it is being transfer-printed on the glass substrate and that the ribs are formed with high precision.
Abstract:
To facilitate evaluation of the amount of a deviation in a column direction between a front substrate and a rear substrate upon assembly of a plasma display panel, thereby improving alignment accuracy between the front substrate and the rear substrate and performances of the resultant plasma display panel, there is provided a plasma display panel comprising partition 15 and position alignment-use ribs 20. The partition 15 is formed of vertical walls 15a extending in a column direction and horizontal walls 15b extending in a row direction on a rear glass substrate 13 so as to partition a discharge space S between a front glass substrate 10 and the rear glass substrate 13 in the row and column directions in accordance with unit luminous regions. The position alignment-use rib 20 is formed on the rear glass substrate, and is positioned in cell Ca which is positioned at the outside of the display region of the plasma display panel within spaces partitioned by the partition 15.
Abstract:
Inorganic powder as a plasma display panel material comprises a powdery material containing glass powder. The powdery material has a moisture content adjusted to fall within a range between 0.1 and 2 mass %. The powdery material may include the glass powder alone or may further comprise ceramics powder in addition to the glass powder. The inorganic powder may be used as a paste or a green sheet.
Abstract:
An AC type plasma display panel including a front substrate, strip-shaped common and scan electrodes on a bottom surface of the front substrate, bus electrodes along one edge of a side of respective the common and scan electrodes, a first dielectric layer on the bottom surface of the front substrate to cover the electrodes, a protective layer on a bottom surface of the first dielectric layer, a rear substrate opposite to and facing the front substrate, address electrodes on a top surface of the rear substrate to be perpendicular with the common and scan electrodes, a second dielectric layer on the rear substrate to cover the address electrodes, partitions comprising strip-shaped main partitions formed on the second dielectric layer, and auxiliary partitions connected to the main partitions to partition a discharge space, and R, G and B phosphor layers formed on the inner walls of the partitions.
Abstract:
In a plasma display panel, data electrodes are formed parallel to each other on a first substrate, and a selection voltage is to be applied to them. A dielectric layer covers a surface of the first substrate to include the data electrodes. Linear partitions are formed at a predetermined interval on the first substrate to be parallel to the data electrodes. A second substrate opposes the first substrate. A closed space between the first and second substrates is filled with a gas. A pair of sustain discharge electrodes are formed on the second substrate to intersect the data electrodes, and a discharge voltage is to be applied across them. Intersections of the pair of sustain discharge electrodes and data electrodes form matrix-like discharge cells. Stepped partitions are formed at a predetermined interval on the first substrate in a direction intersecting the linear partitions, and have heights smaller than those of the linear partitions. Notched openings are formed in the linear partitions at intersections of the linear and stepped partitions. A method of manufacturing a plasma display panel is also disclosed.
Abstract:
A plasma display panel and the manufacturing method thereof. Forming partition wall structures on the back substrate of the paste display panel and forming the column-shaped protrusions at the positions corresponding to the cuts on the rib on the front substrate of the plasma display panel. The manufacturing process is simple and the alignment of the front and back substrate is easy. In addition, the size of the opening of the rib and the size of the cut can be easily adjusted according to the needs of the application during the manufacturing process.
Abstract:
Ribs for defining pixel cells are formed in the shape of a lattice, and sustain electrodes and scan electrodes are disposed near the ribs. The electrodes are spaced apart in each pixel cell, and the sustain electrode and the scan electrode are each cut away between pixel cells arranged in the row direction to provide each pixel cell with individually separated electrodes. In addition, between pixel cells adjacent to each other in the row direction, the sustain electrodes and the scan electrodes are connected to each other by means of a sustain-side bus electrode and a scan-side bus electrode, respectively. This makes it possible to provide a high luminous efficiency. Furthermore, each pixel cell is provided with a wide distance between the electrodes and thereby with a large effective opening portion. Thus, this provides only a small amount of reduction in intensity when the electrodes are spaced apart between the pixel cells arranged in the row direction in order to increase the luminous efficiency. The sustain electrodes or the scan electrodes can be connected to each other or shared between pixel cells adjacent to each other in the column direction and thus the effective opening portion can be made larger, thereby making it possible to provide a further increased intensity and luminous efficiency.
Abstract:
A plasma display panel in which common electrode lines, scan electrode lines, and address electrode lines are located between a front substrate and a rear substrate, the substrates facing each other and being spaced apart from each other. The common electrode lines and scan electrode lines are parallel, the address electrode lines are orthogonal to the scan electrode lines and define pixels at each intersection. Partition walls accurately defining a discharge space are parallel to the address electrode lines, and the address electrode lines are divided into at least two parts to be separately driven. The respective partition walls are divided where the address electrode lines are divided to produce passages for gas flow.
Abstract:
Barrier ribs of the second type (50) of the same height and material as barrier ribs of the first type (29) are formed on a second substrate in parallel with each other along a first direction (D1) to which display electrodes XE and YE extend. Further, phosphors (28) adhere to both side surface portions (50W3 and 50W4) of the barrier ribs of the second type (50). This achieves a surface discharge type PDP capable of reducing a loss of ultraviolet rays due to repetition of the self absorption and emission of ultraviolet rays, and preventing the leakage of luminescence and discharge to adjacent display lines.