Abstract:
A plasma display panel is disclosed. The plasma display panel includes a front substrate on which a scan electrode and a sustain electrode are positioned, a first black layer positioned between the scan electrode and the front substrate and between the sustain electrode and the front substrate, a rear substrate on which an address electrode is positioned to intersect the scan electrode and the sustain electrode, and a barrier rib that is positioned between the front substrate and the rear substrate to partition a discharge cell. The first black layer includes cobalt (Co) material and ruthenium (Ru) material. The barrier rib including lead (Pb) equal to or less than 1,000 ppm (parts per million).
Abstract:
In order to reduce the discharge delay time and increase the image quality in a display device such as a PDP using ultraviolet light emission produced by discharge, there is provided a display device including: a front panel and a rear panel disposed opposite to each other with discharge spaces formed therebetween, and a discharge gas being injected into the discharge spaces; at least a pair of electrodes for performing a display discharge; and phosphor layers emitting visible light by using ultraviolet light emission produced by discharge of the discharge gas. At least one of the compounds represented by the composition formulas Cs(1−x)M1xAl02 (where M1 is the I group element, 0≦5x
Abstract:
Provided is a material for forming barrier ribs, barrier ribs formed using the material, and a PDP comprising the barrier ribs. The material is photosensitive and made from a glass frit composition which is environmentally friendly (no Pb or Bi) and also prevents light scattering. The primary component of the glass frit is P2O5. Other components can be included in the barrier rib forming material such as an alkali-based metal oxide, B2O3, SiO2, etc. The barrier rib formed of the glass frit can additionally include a photosensitive organic material which may include a crosslinking agent, a polyfunctional monomer or oligomer, a photo initiator, a binder and an additive. A method of forming the barrier ribs comprising the glass frit composition is also provided as is a PDP including such barrier ribs.
Abstract:
The present invention relates to a plasma display panel (PDP) that includes a first substrate, an address electrode formed on the first substrate, a dielectric layer formed on the first substrate and covering the address electrode, a barrier rib formed on the dielectric layer, a second substrate, a display electrode formed on the second substrate, a dielectric layer formed on the second substrate and covering the display electrode, and a protection layer formed on the dielectric layer of the second substrate. Discharge cells are defined by barrier ribs, and a phosphor layer is formed in the discharge cells. Barrier ribs contains inorganic adsorbent. When a PDP is operated for a long time, residual carbon or water is generated inside discharge cells, and thereby contaminates a discharge gas contained in the discharge cells. The inorganic adsorbent included in the barrier ribs absorb the residual carbon or water improving efficiency and lifespan of the PDP.
Abstract:
A plasma display panel (PDP) having excellent exhaust efficiency and reduced reflection of external light and its method of manufacture includes: a substrate, colored barrier ribs to partition a discharge space into a non-discharge area and a discharge area, a colored first dielectric layer arranged in the non-discharge area, and a second dielectric layer disposed in the discharge area and having a higher brightness than that of the first dielectric layer.
Abstract:
A method of manufacturing a plasma display panel is disclosed. The method includes forming at least one of a dielectric layer on a principal face of a substrate, barrier ribs which partition a discharging space on the dielectric layer, and a phosphor layer disposed between the barrier ribs using an inorganic material into which solution including a degassing material is impregnated.
Abstract:
A plasma display panel and a manufacturing method thereof are disclosed. The panel includes a substrate having a plurality of discharge cells, and barrier ribs defining the discharge cells, the barrier ribs contain carbon in an amount of 0.1 to 10% by weight.
Abstract:
A plasma display panel is disclosed. The plasma display panel includes first barrier ribs partitioning a plurality of sub pixels, and second barrier ribs partitioning neighboring unit pixels wherein the plurality of sub pixels form one unit pixel. A width of each of the second barrier ribs partitioning the unit pixels is wider than that of each of the first barrier ribs partitioning the plurality of sub pixels. A sub pixel located at the center of the plurality of sub pixels is a blue sub pixel.
Abstract:
A plasma display panel (PDP) that improves a transmittance rate of visible rays, prevents address electrodes from producing a lot of heat, and reduces the occurrence of afterimages from the PDP, and a plasma display apparatus using the PDP are provided. The PDP includes: a substrate through which visible rays displaying an image are transmitted; a plurality of electrode buried walls arranged below the substrate and defining discharge cells; a plurality of pairs of discharge electrodes spaced apart from each other in the electrode buried walls and performing a discharge in the discharge cells; a sealing member arranged below the electrode buried walls, sealing a discharge gas together with the substrate, and formed of a material having a higher thermal conductivity than that of the substrate; and phosphor layers arranged in the discharge cells.