Abstract:
In one embodiment, an audio system has a microphone array and a signal processing subsystem that processes audio signals generated by the microphone array to produce an output beampattern. The microphone array has (i) a first microphone set of two or more microphones located on a first ellipse, (ii) a second microphone set of two or more microphones located on a second ellipse within the first ellipse, and (iii) a third microphone set of one or more microphones located within the second ellipse, where the microphones in the first, second, and third microphone sets are effectively all in one plane. The signal processing subsystem has (1) a decomposer that spatially decomposes the microphone audio signals to generate a plurality of eigenbeams and (2) a beamformer that generates the output beampattern as a weighted sum of the eigenbeams.
Abstract:
In one embodiment, an audio system has a microphone array and a signal processing subsystem that processes audio signals generated by the microphone array to produce an output beampattern. The microphone array has (i) a plurality microphones arranged in a circular portion and (ii) a center microphone. The signal processing subsystem has (1) a decomposer that spatially decomposes the microphone audio signals to generate a plurality of eigenbeams and (2) a beamformer that generates the output beampattern as a weighted sum of the eigenbeams. By adding the center microphone, the audio system is able to provide some degree of control over the beamforming in the vertical direction as well as provide reduction of modal aliasin.
Abstract:
A speaker system (1, 1′, 1″) comprises a first speaker driver group (G1), comprising at least one first speaker driver (S1) and a first amplifier (A1), and a second speaker driver group (G2), comprising at least one second speaker driver (S2) and a second amplifier (A2). The speaker system further comprises a digital signal processor (2), adapted to provide a first signal to the first speaker driver group (G1) and a second signal to the second signal group (G2), wherein the first and second signals differ with respect to frequency range and at least one of the speaker driver groups comprises at least 4, 6, 8 or 10 speaker drivers.
Abstract:
To solve the problems with the prior art that a multi-microphone array cannot inhibit broad-band noises well and cannot be used in the increasingly widespread broad-band communication, embodiments of the present invention disclose a method, a device and a system for eliminating noises with multi-microphone array. The method according to an embodiment of the present invention comprises according to the number of different spacings between each of pairs of microphones of the multi-microphone array, dividing a full frequency band into the same number of sub-bands; decomposing signals of each of the pairs of microphones with the different spacings into a corresponding one of the sub-bands, wherein the larger the spacing between each pair of microphones is, the lower the frequencies of the sub-band into which the signals of the pair of microphones are decomposed will be; adaptively reducing the noises in the decomposed signals of each of the pairs of microphones with the different spacings in the corresponding sub-band to obtain noise-reduced signals for each of the sub-bands; and synthesizing the noise-reduced signals of each of the sub-bands to obtain a signal in which the noises have been reduced with the multi-microphone array in the full frequency band. The embodiments of the present invention can be used in scenarios of hands-free video calls.
Abstract:
Positive and negative two terminals of each of a plurality of main speakers constituting an array speaker are connected to each of amplifiers. Then, the main speakers are bridge-driven. Sub-speakers interpolating the main speakers are arranged respectively between the main speakers. Then, the positive and negative terminals of each of the sub-speakers are connected respectively to the terminals of the same polarities of the adjacent two of the main speakers. One sub-speaker receives an average value of the signals provided to the adjacent two main speakers, so that the one sub-speaker interpolates the wavefronts emitted from the adjacent two main speakers.
Abstract:
A video teleconferencing directional microphone includes two microphone elements arranged coincidentally on a vertical axis. The two microphone elements are placed on a supporting surface so that a first microphone element is on the surface, and the second microphone elements are elevated above the supporting surface. The directional microphone also includes filters, an adder assembly, and an equalizer, which are used to shape the directivity pattern of the directional microphone into a toroid sensitivity pattern. The toroid sensitivity pattern increases sensitivity in the direction of a sound source of interest, while simultaneously reduces sensitivity to any sound waves generated by noise sources from certain elevation angles.
Abstract:
Provided is an image sensing apparatus in which directivity can be changed in accordance with the position of the shooter. The image sensing apparatus includes a video shooting unit, at least four microphones placed around the video shooting unit, and an audio signal processing unit adapted to synthesize audio signals from two microphones among the at least four microphones, thereby outputting a synthesized audio signal from a specific direction of the video shooting unit. The apparatus further includes a selecting unit adapted to select the position of a shooter. The audio signal processing unit includes a directivity changeover unit adapted to change over directivity by changing a combination of the two microphones in accordance with a selection output signal the said selecting unit.
Abstract:
Microphones arranged in an array shape along a longitudinal direction are respectively formed in both the longitudinal side surfaces of a housing 2 with substantially an elongated rectangular parallelepiped shape, and speakers arranged in an array shape along the longitudinal direction are formed in a lower surface. The speaker array forms sound emission beams based on sound emission directivity set according to a conference environment. On the other hand, when the microphone array forms sound collection beams by sound collection signals collected, a talker direction is detected from these beams and an output sound signal corresponding to this direction is formed and also is reflected on setting of the sound emission directivity. Also, when there are plural input sound signals, the sound emission directivity is set according to a use situation of the plural input sound signals.
Abstract:
A compact and portable loudspeaker system operable in two configurations includes a driver array and a base unit having a bass enclosure and a dock. In an extended configuration, the driver array is supported by one or more extension legs between three to eight feet above the base unit where one of the extension legs is held by the dock. The base unit may be placed on a floor of a small to medium venue with the mid-to-high range driver array elevated near or above the elevation of an audience in the venue. In a compact configuration, the driver array is directly supported by the dock and the base unit and driver array may be placed on a table or desk in a classroom, conference room, or other such small to medium venue. The portable loudspeaker system may be transported in the compact configuration.