Abstract:
Measurement data is received from first and second seismic sensors, where the first and second seismic sensors are oriented in opposite directions. Each of the first and second seismic sensors has a sensing element responsive to pressure and particle motion. The signals can be combined to remove the particle motion component of the measurement data and obtain pressure-only data. Alternatively, the signals can be combined to deghost the received measurement data.
Abstract:
A controller controls phases of signals produced by survey sources according to a frequency of the signals. The controlling includes controlling the survey sources to be in phase for frequencies less than a predetermined frequency, and randomizing phases of the signals emitted by the survey sources for frequencies greater than the predetermined frequency, wherein the randomizing includes applying a smoothing operator in a specified frequency range, and emit signals with different phases for frequencies greater than the predetermined frequency.
Abstract:
Various implementations described herein are directed to a method of performing a seismic survey operation. The method may include receiving a target acoustic output for a seismic survey. The method may include selecting an operating chamber liner for an airgun to be used in a seismic survey that corresponds to the target acoustic output. The method may also include performing a seismic survey using the airgun having the selected operating chamber liner.
Abstract:
Various implementations described herein are directed to a method of performing a seismic survey operation. The method may include deploying two seismic sources. The method may include using the two seismic sources to perform a simultaneous in-phase precursor sweep. The method may also include using the two seismic sources to perform a simultaneous out-of-phase cascaded sweep.
Abstract:
A seismic source array includes a first source and a second source. The first source has a first spectral output and the second source has a second spectral output different than the first spectral output. The first source has a first total volume different than a second total volume of the second source.
Abstract:
A method for transmitting acoustic signals from pingers. The method includes transmitting acoustic signals from a first group of pingers within a seismic spread. The method includes transmitting acoustic signals from a second group of pingers within the seismic spread after a predetermined amount of time has passed, wherein the signals from the first group and the second group are emitted between two seismic shots. The first group of pingers and the second group of pingers are mutually exclusive.
Abstract:
Computing systems and methods for improving processing of collected data are disclosed. In one embodiment, while ray-tracing through a sub-surface region, a frequency-dependent outgoing ray direction is computed from a point on an interface disposed in the sub-surface region when the ray tracing is at the interface.
Abstract:
A shot interval between activations of at least one frequency-controllable survey source is determined, where the shot interval is determined based on an expected frequency of an output of the at least one frequency-controllable survey source. The at least one frequency-controllable survey source is activated using the determined first shot interval.
Abstract:
An inventive method provides for control of a seismic survey spread while conducting a seismic survey, the spread having a vessel, a plurality of spread control elements, a plurality of navigation nodes, and a plurality of sources and receivers. The method includes the step of collecting input data, including navigation data for the navigation nodes, operating states from sensors associated with the spread control elements, environmental data for the survey, and survey design data. The positions of the sources and receivers are estimated using the navigation data, the operating states, and the environmental data. Optimum tracks for the sources and receivers are determined using the position estimates and a portion of the input data that includes at least the survey design data. Drive commands are calculated for at least two of the spread control elements using the determined optimum tracks. The inventive method is complemented by an inventive system.
Abstract:
Methods and systems for marine survey acquisition are disclosed. In one embodiment, a method is provided that may deploy a marine seismic spread that includes a first seismic source, a second seismic source and a streamer with a receiver. The second source may be disposed at a distance from the first seismic source in an inline direction. The distance may be selected to produce one or more pairs of shot points during a seismic survey. The shot points within a pair may be disposed within a range that is used to calculate a pressure source gradient between the shot points within the pair. The method may shoot the first seismic source and the second seismic source substantially simultaneously. The method may record seismic data associated with shooting the first seismic source and the second seismic source. The method may calculate the pressure source gradient for respective pairs of shot points.