摘要:
Systems, computer readable, and methods concern receiving seismic data representing a subsurface volume. The method also includes determining, for the seismic data, analysis coordinates as a function of time. One or more of the analysis coordinates may vary in position over time. The method includes performing at least one of an interpolation or regularization process on the seismic data based at least partially on the analysis coordinates. The method also includes outputting a result of the at least one of the interpolation or regularization process.
摘要:
Systems and methods for generating a three-dimensional image of a proppant-filled hydraulically-induced fracture in a geologic formation are provided. The image may be generated by capturing electromagnetic fields generated or scattered by the proppant-filled fracture, removing dispersion and/or an attenuation effects from the captured electromagnetic fields, and generating the image based on the dispersion and/or attenuation corrected fields. Removing the dispersion and/or attenuation effects may include back propagating the captured electromagnetic fields in the time domain to a source location. The image may be generated based on locations at which the back propagated fields constructively interfere or may be generated based on a model of the fracture defined using the back propagated fields.
摘要:
Seismic data recorded by subsurface seismic sensors placed in a borehole, such as an oil or gas well, are transformed via a process of upward wavefield propagation to pseudo-receivers at the surface of the earth. The seismic data thus transformed can be processed as though the data had been recorded by the pseudo-receivers at the surface rather than in the borehole where the data were actually recorded. This method accurately accounts for seismic source statics, anisotropy, and all velocity effects between the real receivers in the borehole and the pseudo-receivers at the surface of the earth.
摘要:
A system and method for modeling seismic data using time preserving tomography including storing an initial set of parameter values representing an initial seismic data model. The initial seismic model may correspond to at least two or more ray pairs. Each ray pair may have a traveltime. An altered model may be generated by altering two or more parameter values in the initial set of parameter values for each of two or more ray pairs in the initial model. Altering one parameter value without altering the remaining of the two or more parameter values may correspond to a change in the traveltime of each of the ray pairs, while altering the two or more parameter values in combination typically corresponds to no net change in the traveltime of each of the ray pairs.
摘要:
According to one embodiment, subsurface ray directions in beam migration or subsurface wave propagation directions in reverse time migrations are used to obtain additional Specular Filter (SF) and Dip Oriented Partial Imaging (DOPI) images. SF migration applies a specular imaging condition during migration with a pre-specified subsurface dip field. It boosts the S/N ratio in both images and gathers, by effectively removing migration noise. DOPI images are produced by decomposing a standard migration image according to subsurface dip inclination or/and dip azimuth groups, providing various views of the subsurface image. Both SF and DOPI migration images can supply valuable additional information compared to a standard migration image, and they can be efficiently generated during migration.
摘要:
Computing systems and methods for improving processing of collected data are disclosed. In one embodiment, while ray-tracing through a sub-surface region, a frequency-dependent outgoing ray direction is computed from a point on an interface disposed in the sub-surface region when the ray tracing is at the interface.
摘要:
The invention relates to seismic surveying where complex geologies are likely to create data that is confusing or ambiguous for a conventional matrix of acquisition source points and receiver locations. With some understanding of the geological substructure, the acquisition source points and receiver locations that optimize the imaging may be found by using a reciprocal two-way wave equation propagation method coupled with the best geologic model available. With this, the acquisition source points and receiver locations that optimize the imaging may be used in seismic survey to better resolve the substructure and avoid the inclusion of data that obscures understanding of the substructure.
摘要:
Method for reconstructing subsurface Q models (110) from seismic data (10) by performing ray-based (60), centroid frequency shift (50) Q tomography. The seismic source waveform's amplitude spectrum is approximated by a frequency-weighted exponential function of frequency (40), having two parameters to adjust to fit the frequency shift data, thereby providing a better fit to various asymmetric source amplitude spectra. Box constraints may be used in the optimization routine, and a multi-index active-set method used in velocity tomography is a preferred technique for implementing the box constraints (100).
摘要:
According to one embodiment, subsurface ray directions in beam migration or subsurface wave propagation directions in reverse time migrations are used to obtain additional Specular Filter (SF) and Dip Oriented Partial Imaging (DOPI) images. SF migration applies a specular imaging condition during migration with a pre-specified subsurface dip field. It boosts the S/N ratio in both images and gathers, by effectively removing migration noise. DOPI images are produced by decomposing a standard migration image according to subsurface dip inclination or/and dip azimuth groups, providing various views of the subsurface image. Both SF and DOPI migration images can supply valuable additional information compared to a standard migration image, and they can be efficiently generated during migration.
摘要:
A system and method for modeling seismic data using time preserving tomography including storing an initial set of parameter values representing an initial seismic data model. The initial seismic model may correspond to at least two or more ray pairs. Each ray pair may have a traveltime. An altered model may be generated by altering two or more parameter values in the initial set of parameter values for each of two or more ray pairs in the initial model. Altering one parameter value without altering the remaining of the two or more parameter values may correspond to a change in the traveltime of each of the ray pairs, while altering the two or more parameter values in combination typically corresponds to no net change in the traveltime of each of the ray pairs.