Abstract:
Marine seismic surveys, including ocean bottom surveys, utilizing marine vibrator arrays that are capable of being driven in anti-phase to produce a directional source gradient. Marine seismic surveys may include activating the vibrator array to emit a plurality of radiation patterns with at least a first radiation pattern that has a first notch at a take-off angle that is not close to vertical. Some marine seismic surveys included emitting directive wavefields from two or more simultaneous seismic source arrays, where the two or more seismic source arrays have a phase that changes from shot-to-shot to allow simultaneous source separation of the directive wavefields.
Abstract:
The disclosure herein generally relates to a device for use in marine seismic surveying. A displacement apparatus has a base and an actuated head. The actuated head is coupled to an actuation means comprising a shaft, a cam, and a motor. The cam is coupled to the shaft at a radial position from the center of the cam. A vacuum piston is optionally coupled to the actuation means. A variable resonance spring, such as an air spring, is coupled to the actuated head in order to tune the apparatus to operate in resonance at a range of frequencies.
Abstract:
Presented are methods and systems for collecting marine seismic data. The collected seismic data can be low frequency (e.g., less than 10 Hz) or it can be a full seismic bandwidth (1-200 Hz) depending on if the low frequency tuned sources and tuned receivers are combined with conventional sources and receivers. The low frequency sources can be towed or they can be autonomous and positioned in the survey area by tether, drifting or self-propelled. The tuned low frequency receivers are towed at a depth greater than conventional receivers and the sources can be fired independently or simultaneously.
Abstract:
A subaqueous underground survey system using a reflection seismic survey method includes: multiple sound sources 1 for generating sound waves in the water; a controller 2 for controlling phases of the sound waves; a geophone 3 for receiving reflected waves of the sound waves; and an observation ship 4 equipped with the sound sources 1, wherein the controller 2 controls phases of the sound sources 1 so that the sound waves generated from the respective sound sources 1 have a phase difference at a water bottom surface B, thereby controlling generation of shear waves to propagate into the ground.
Abstract:
Acquiring seismic data using time-distributed sources and converting the acquired data into impulsive data using a multiple-frequency approach. The methods are performed in frequency-source location domain, frequency-wavenumber domain, or frequency-slowness domain. The methods are applicable to single source acquisition or simultaneous source acquisition.
Abstract:
Method for separating signals recorded by a seismic receiver and generated with at least two vibratory seismic sources driven with no listening time. The method includes receiving seismic data that includes data d recorded by the seismic receiver and data related to the first and second vibratory seismic sources; computing a source separation matrix based on the data related to the first and second vibratory seismic sources; calculating first and second earth impulse responses HA and HB corresponding to the two vibratory seismic sources, respectively, based on the data d recorded by the seismic receiver, the data related to the two vibratory seismic sources and the source separation matrix; and separating the signals recorded by the seismic receiver based on the first and second earth impulse responses HA and HB such that signals the two vibratory seismic sources are disentangled.
Abstract:
A method for use in marine seismic surveying includes: towing at least a portion of a marine seismic survey spread; imparting a composite swept seismic signal from the marine seismic survey spread, the composite swept seismic signal including a plurality of randomized subsweeps having different frequencies relative to one another and being emitted in parallel; and receiving a respective return for each of the subsweeps.
Abstract:
A computing device and a method for processing seismic data associated with a surveyed subsurface. The method includes receiving at least first and second seismic data sets that were recorded with different spatial sampling and different temporal bandwidths; using the first seismic data to guide a processing of the second seismic data; and generating an image of the subsurface based on processed second seismic data.
Abstract:
Systems and methods for generating seismic signal include using a conventional airgun array and specifically detunes the timing of the array so individual airguns are not fired at the same time and with their interacting bubbles form a unique composite pulse that can be separated by various means out of a seismic record to form the shotpoint. The advantage of this approach is a lower overall noise envelope in the water minimizing impact on the marine mammals and it allows multiple arrays to be fired in close spatial and timing proximity with minimal to no interference.
Abstract:
Computing device, computer software and methods for generating sweep signals corresponding to plural sources that generate seismic waves. The method includes selecting (502) a nominal sweep signal (S0); applying (512) a perturbation (P) to the nominal sweep signal (S0); and calculating (518) the sweep signals (Sn) by varying the perturbation (P), each sweep signal corresponding to a seismic source.