Abstract:
The number of hall passengers waiting at a stop for service by an elevator car is determined by first calculating instantaneous passenger rates whenever a hall call button is pressed or whenever passengers board an elevator car. The instantaneous passenger rates are scaled to compensate for the inherent differences in service rates of the stops. The scaled rates are averaged into one or more of an up, down, or off peak quantities depending upon the mode of the elevator system. The number of hall passengers waiting at a stop is then calculated by multiplying one or more of the up, down, or off peak quantities, depending upon the mode of the elevator system, by the elapsed time since the stop was last serviced.
Abstract:
Embedded elevator control software, responsive to WEIGHT, CARCALLS, HALLCALLS and STOPS signals, uses fuzzy logic to determine the number of passengers entering and exiting an elevator car at a stop. The software forms three fuzzy logic sets representing temporary estimates of the number of entering passengers and forms three fuzzy logic sets indicative of temporary estimates of the number of exiting passengers. The sets are combined to form a single fuzzy logic set indicative of the number of entering passengers and a single fuzzy logic set indicative of the number of exiting passengers.
Abstract:
An elevator system containing a group of elevator cars (1-4) and a group controller (32) having signal processing means (CPU) for controlling the dispatching of the cars from a main floor or lobby (L) in relation to different group parameters. During up-peak conditions, each car is dispatched from the main floor to an individual plurality of contiguous floors, defining a "sector" (SN). Sectors are contiguous, and the number of sectors may be less than the number of cars, and a floor can be assigned to more than one sector. Floors that constitute a sector assigned exclusively to a car are displayed on an indicator (SI) at the lobby. Cars are selected for assignment by grouping floors into sectors and appropriately selecting sectors, so that each elevator car handles more or less an equal predicted traffic volume during varying traffic conditions, resulting in the queue length and waiting time at the lobby being decreased, and the handling capacity of the elevator system increased. Estimation of future traffic flow levels for the various floors for, for example, each five (5) minute interval, are made using traffic levels measured during the past few time intervals on the given day as real time predictors, using a linear exponential smoothing model, and traffic levels measured during similar time intervals on previous days as historic traffic predictors, using a single exonential smoothing model. The combined estimated traffic is then used to group floors into sectors ideally having at least nearly equal traffic volume for each time interval.
Abstract:
Elevator system with multiple cars (1-4) and a group controller (32) having signal processing means (CPU) controlling car dispatching from the lobby (L). During peak conditions (up-peak, down-peak and noontime), each car is dispatched and assigned to hall call floors having a large predicted number of passengers waiting on priority basis, resulting in queue length and waiting time at the lobby and upper floors being decreased, and system handling capacity increased. Estimations of future traffic flow levels for the floors for five minute intervals are made using traffic levels measured during the past few time intervals on that day as real time predictors, using a linear exponential smoothing model, and traffic levels measured during similar time intervals on previous similar days as historic traffic predictors, using a single exponential smoothing model. Combined prediction is used to assign hall calls to cars on priority basis for those floors having predicted high level of passenger traffic to limit maximum waiting time and car load. Noontime priority scheme is based on multiple queue sizes and percentages of maximum waiting time limits. Different waiting time limits can be used for lobby and above lobby up and down hall calls with automatic adjustment. During up-peak the lobby is given high priority. The lobby queue is predicted using passenger arrival rates and expected car arrival times. Down-peak operation uses multiple queue levels and percentages of waiting time limits, with estimated queues based on passenger arrival using car-to-hall-call travel time.
Abstract:
An elevator control system employing a micro-processor-based group controller (FIG. 2) which communicates with the cars (3, 4) of the elevator system to determine conditions of the cars and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, to provide assignments of the hall calls to the cars based on the summation for each car, with respect to each call, a weighted summation of a plurality of system response factors, some indicative, and some not, of conditions of the car irrespective of the call to be assigned, assigning "bonuses" and "penalties" to them in the weighted summation. In the invention, rather than a set of unvarying bonuses and penalties being assigned based on the relative system response factors, the assigned bonuses and penalties are varied based on the perceived intensity of traffic, as measured by, for example, a past average waiting time and the elapsed time since registration of the hall call, a selected past five minute average waiting time being exemplary. Exemplary apparatus (FIGS. 1 and 2) and a logic flow diagram (FIG. 3) illustrate a specific manner of assigning calls to cars. Tables set forth exemplary varying bonus and penalty values to be assigned, depending on the ratio of the hall call registration time to the selected average hall call waiting time (Tables 1 and 2) or on their differences (Table 3).
Abstract:
An elevator system contains a group of elevator cars. A group controller contains signal processing means for controlling the dispatching of the cars from a main floor or lobby in relation to different group parameters. During up-peak conditions, each car is dispatched from the main floor to an individual plurality of contiguous floors, defining a "sector". Sectors are contiguous. The number of sectors may be less than the number of cars. Floors that constitute a sector assigned exclusively to a car are displayed on an indicator at the lobby. Sectors and cars are selected for assignment in a cyclical or round-robin sequence. If the next car selected is not available for assignment, another car is selected. If no car calls are made to the floors in the sector that is assigned to a car, the next sector is selected. The floors in the sector assigned to a car are displaced to direct passengers to the car. If car calls to the floors are not made, the car doors are closed and a new sector is assigned to the car according to the sequence.
Abstract:
An elevator dispatching method which estimates the time of arrival (ETA) of each car at the floor of a hall call to be assigned. A building profile of average door cycle times per floor, over predetermined periods of the day, is tabulated and used in the ETA calculations, to provide more accurate ETA values and thus a lower average call waiting time.
Abstract:
The disclosure concerns a group supervisory control system for an elevator having statistical traffic data for the elevator from a past time interval and controlling the operation of the car dependent on the statistical data wherein the system comprises an operating apparatus which detects the distinction points of the variation of the traffic data to output traffic data and time for the distinction points as statistical data.
Abstract:
An elevator group supervisory control system for allocating elevator hall calls to elevator cars depending upon estimates given by processing of data indicative of travels of said cars, including a probability processor for determining an estimated future response probability based on predetermined travel data and an estimation processor for allocating hall calls to respective elevator cars based at least in part on the estimated future response probability.
Abstract:
With this group control the allocation of elevator cabins or cars to existing storey or floor calls should be timewise optimized and newly arriving storey calls should be immediately allocated. A computer device provided for each elevator computates at each landing or storey, irrespective of whether or not there is present a storey or landing call, from the distance between the storey and the cabin position indicated by a selector, the intermediate cabin stops to be expected within this distance and the momentary cabin load a sum proportional to the time losses of waiting passengers. In this way the cabin load prevailing at the computation time point is corrected such that the expected number of passengers entering and exiting the cabin, derived from the previously ascertained number of entering and exiting passengers, is taken into account for the future intermediate cabin stops. Such loss time sum, also referred to as the servicing cost, is stored in a cost storage or memory provided for each elevator and infed to a comparator. During a cost comparison cycle the servicing costs of all elevators are compared with one another, and in an allocation storage of the elevator with the lowest servicing cost there can be stored an allocation instruction which designates that storey or floor to which there can be optimumly allocated the relevant elevator cabin.