Abstract:
An aspect includes capturing crowd data associated with a lobby area of an elevator system. A dispatching schedule of one or more elevator cars of the elevator system is adjusted based on the crowd data. A notification of the adjustment to the dispatching schedule is output.
Abstract:
An elevator system includes: a destination call registration device which accepts an operation of registering a destination call by specifying a destination floor; an exit floor selection part provided in the destination call registration device and by use of which a user selects an exit floor provided with an exit of a building as a destination floor of the destination call; an exit floor determination part which determines, on the basis of predetermined conditions, which floor is the exit floor from candidates for an exit floor which are set beforehand as floors capable of being selected as the exit floor among plural floors of the building; and a destination call registration part which registers the destination call in which the specific floor determined as the exit floor by the exit floor determination part is a destination floor in the case the exit floor selection part is operated by a user.
Abstract:
There is provided an elevator group control system, in which even after an assigned car has been determined, the assigned car can be changed as necessary, and therefore comfortable service can be offered to a user. This group control system includes a call registration device by the use of which a user registers a hall destination call before getting into a car, a car position detection part for detecting the car position of each elevator, and a call registration storage part for storing, for each elevator, a hall destination call having been registered. When a hall destination call having the same contents as those of an already registered hall destination call stored in the call registration storage part is registered newly from the call registration device, if a non-assigned car has already arrived at the floor on which the call registration device is installed, the newly registered hall destination call is assigned to the non-assigned car.
Abstract:
A car-based running power computing mechanism computes running power values of each car in both cases including cases before and after a newly generated hall call is assigned. A car-based regenerative power computing mechanism computes regenerative power values of each car in the both cases. A car-based future running power computing mechanism computes future running power values of each car in the both cases. A car-based future regenerative power computing mechanism computes future regenerative power values of each car in the both cases. A car-based assigned total evaluation index computing mechanism obtains an in-travel power consumption value and an in-future-travel power consumption value based on the running power values, regenerative power values, future running power values, future regenerative power values and the like, to thereby compute assigned total evaluation indices of each car in the both cases. An assigned car deciding mechanism decides an assigned car based on the assigned total evaluation indices.
Abstract:
An elevator group control system is obtained which is improved in the operating efficiency of entire cars by determining an assigned car with the use of an evaluation value calculated from an increment of the number of floors to be stopped by each car when a hall destination call newly generated by a hall control panel is temporarily assigned to each car. The system includes a hall input unit which is installed in a hall and by which the registration of a destination floor call is able to be made, and an assignment evaluation value calculation unit which includes a plurality of evaluation value calculation units for calculating the respective evaluation values of a plurality of cars in an individual manner, determines a final evaluation value from the respective evaluation values, and selects an optimal assigned car. The assignment evaluation value calculation unit includes a stop number increment evaluation value calculation unit, and the stop number increment evaluation value calculation unit sets an increment variable from an increment of the number of floors to be stopped at the time when a new hall call newly generated and a new hall destination call representing a destination floor of the new hall call are temporarily assigned to each of the plurality of cars, and calculates a stop number increment evaluation value based on the increment variable thus set.
Abstract:
A method for assigning an elevator car to respond to a call signal includes a controller that determines which elevator car will respond to the call signal based on certain time metrics. The controller receives a hall call signal, and based on certain time metrics that can include, e.g., an estimated wait time (EWT), and/or estimated travel time (ETT), assigns the call signal to an elevator car. In this example, EWT represents the time a passenger is waiting for an elevator car to arrive, and ETT represents the it takes for a passenger to reach their destination once having boarded an elevator car. In some versions, an estimated time to destination (ETD) is used in determining which elevator car to assign, where ETD represents the sum of EWT and ETT. In some versions, a handling capacity coefficient (HCx), which reflects current traffic conditions, is used in determining which elevator car to assign.
Abstract:
An intelligent destination elevator control system streamlines the efficiency and control of destination elevators. The system monitors a building's population and predicts elevator traffic conditions. The system may monitor attributes of the destination elevators. Based on the monitored data, the system may generate a data structure that renders time-tables and target elevator service quality parameters that may control the destination elevators.
Abstract:
A double-deck elevator group controller including a hall-installed car call registration device, cars of the first operation mode which are in charge of operation between even-numbered floors or between odd-numbered floors and cars of the second operation mode which serve all of the floors at which the cars can stop, are set, and in consideration of both combinations of boarding and alighting floors of registered from-hall car calls and an increment of the number of stops, the from-hall car calls are divided for assignment to the cars of the first operation mode and the cars of the second operation, whereby it is possible to meet from-hall car calls having arbitrary floors as the boarding and alighting floors and it is possible to improve the operation efficiency.
Abstract:
A car-based running power computing mechanism computes running power values of each car in both cases including cases before and after a newly generated hall call is assigned. A car-based regenerative power computing mechanism computes regenerative power values of each car in the both cases. A car-based future running power computing mechanism computes future running power values of each car in the both cases. A car-based future regenerative power computing mechanism computes future regenerative power values of each car in the both cases. A car-based assigned total evaluation index computing mechanism obtains an in-travel power consumption value and an in-future-travel power consumption value based on the running power values, regenerative power values, future running power values, future regenerative power values and the like, to thereby compute assigned total evaluation indices of each car in the both cases. An assigned car deciding mechanism decides an assigned car based on the assigned total evaluation indices.
Abstract:
An elevator group control system is obtained which is improved in the operating efficiency of entire cars by determining an assigned car with the use of an evaluation value calculated from an increment of the number of floors to be stopped by each car when a hall destination call newly generated by a hall control panel is temporarily assigned to each car. The system includes a hall input unit which is installed in a hall and by which the registration of a destination floor call is able to be made, and an assignment evaluation value calculation unit which includes a plurality of evaluation value calculation units for calculating the respective evaluation values of a plurality of cars in an individual manner, determines a final evaluation value from the respective evaluation values, and selects an optimal assigned car. The assignment evaluation value calculation unit includes a stop number increment evaluation value calculation unit, and the stop number increment evaluation value calculation unit sets an increment variable from an increment of the number of floors to be stopped at the time when a new hall call newly generated and a new hall destination call representing a destination floor of the new hall call are temporarily assigned to each of the plurality of cars, and calculates a stop number increment evaluation value based on the increment variable thus set.