Abstract:
The present disclosure provides a system and a method for controlling motion of a bank of elevators. The method includes accepting current requests for service by the bank of elevators, accepting a partial trajectory of a motion of a person moving in an environment serviced by the bank of elevators, and obtaining a probability of a future elevator request. The method further includes processing the partial trajectory with a neural network trained to estimate a weighted combination of probability density functions that indicates an arrival time distribution of the person, and generating a set of possible future requests jointly representing the probability of the future elevator request and the arrival time distribution. The method further includes optimizing a schedule of the bank of elevators to serve the current requests and the set of possible future requests, and controlling the bank of elevators according to the schedule.
Abstract:
A method for controlling elevator cars of an elevator system according to one example includes assigning free elevator cars of the elevator system to one of either general service or express priority service (EPS). A destination dispatch controller receives an express priority service (EPS) call. The EPS call can indicate a request for priority service from an EPS call originating location to an EPS call final destination. The controller can determine whether any active EPS assigned car can service the EPS call. A particular elevator car can be an active EPS car when the particular car is carrying out EPS service. When a specific active EPS car can service the EPS call, the controller assigns the specific EPS car to the EPS call. Upon completion of the EPS call, the controller unassigns the EPS car to a free car.
Abstract:
A method of controlling an elevator installation with several elevator cages per elevator shaft, wherein a destination call to a desired destination story is actuated on a call input story by at least one passenger and at least one most favorable call allocation for transport of the passenger by the elevator cage from a start story to a destination story, is determined for the destination call by at least one destination call control. If at least one disadvantage parameter is set, at least one disadvantage-free call allocation for transport of the passenger by the elevator cage from a start story to a destination story is determined by the destination call control, in which it is possible the start story and call input story or the destination story and desired destination correspond.
Abstract:
When a specific destination floor call is made, the control unit assigns an elevator of which waiting time is within the reference time from the plurality of elevators to the specific destination floor call, the waiting time being a time from a time when the specific destination floor call is made to a time when the specific user can get on an elevator at the specific floor. Further, when a general destination floor call is made, the control unit assigns one of the plurality of elevators in response to the general destination floor call such that an elevator of which waiting time to the specific destination floor call that is made after the general destination floor call is within the reference time is left.
Abstract:
A passenger conveyance system includes a depth-sensing sensor for capturing depth map data of objects within a field of view adjacent a passenger conveyance door. A processing module in communication with the depth-sensing sensor to receive the depth map data, the processing module uses the depth map data to track an object and calculate passenger data associated with the tracked object, and a passenger conveyance controller to receive the passenger data from the processing module, wherein the passenger conveyance controller controls a passenger conveyance dispatch control function in response to the passenger data
Abstract:
The invention relates to a method for handling destination calls in an elevator group comprising several elevators using destination call control, which method comprises an allocation procedure for situations where the calls can't be served by all elevators of the elevator group in one round trip, in which situation “n” open calls and “m” fixed calls are present, which fixed calls are already allocated but not served, in which allocation procedure a genetic algorithm (GA) is used in which the following succession of steps is performed:a) chromosomes comprising genes are formed, in which chromosomes: n first genes comprise a correlation of each open call and a corresponding elevator, n second genes comprise a correlation of each open call and the corresponding number of the round trip in which the open call will be served, and m third genes comprise a correlation of each fixed call and the corresponding number of the round trip in which the fixed call will be served, b) for each chromosome round trips are calculated for each elevator of the elevator group according to collective control,c) the round trips of all elevators calculated in step b) are evaluated according to known optimization criteria, as e.g. passenger riding time, passenger waiting time, energy consumption, minimum number of round trips etc.,d) chromosomes which are evaluated in step c) as sufficient are put forward to the forming of a new generation by per se known GA methods, as e.g. cross-breeding, mutation, etc.,e) the steps b) to d) are repeated for each chromosome of each new generation of chromosomes until a stop criterion is achieved,f) the calls are served in collective control according to the best chromosome of the last generation, andg) the destinations of each elevator in its travelling direction in the current round trip according to the best chromosome are shown on a at least one common display shortly before its arrival at said landing. The invention solves the elevator dispatching problem under consideration of more than the current round trip of the elevators in the elevator group.
Abstract:
Embodiments are directed to receiving, by a controller comprising a processor, data that is external to a conveyance device, processing, by the controller, the external data, and controlling, by the controller, the conveyance device based on the processed external data, wherein the external data comprises at least one of: security management data and emergency services data.
Abstract:
An exemplary elevator input device includes a passenger interface configured to allow a passenger to place a call to indicate a desired elevator service. The elevator input device includes a controller configured to interpret any passenger input regarding desired elevator service. The controller identifies which of a plurality of elevator cars will be able to provide the desired elevator service according to a predetermined criterion. The plurality of elevator cars considered by the controller includes every elevator car that is capable of serving the call. The controller is also configured to assign the call to the identified elevator car.
Abstract:
An intelligent destination elevator control system streamlines the efficiency and control of destination elevators. The system monitors a building's population and predicts elevator traffic conditions. The system may monitor attributes of the destination elevators. Based on the monitored data, the system may generate a data structure that renders time-tables and target elevator service quality parameters that may control the destination elevators.
Abstract:
A double-deck elevator group controller including a hall-installed car call registration device, cars of the first operation mode which are in charge of operation between even-numbered floors or between odd-numbered floors and cars of the second operation mode which serve all of the floors at which the cars can stop, are set, and in consideration of both combinations of boarding and alighting floors of registered from-hall car calls and an increment of the number of stops, the from-hall car calls are divided for assignment to the cars of the first operation mode and the cars of the second operation, whereby it is possible to meet from-hall car calls having arbitrary floors as the boarding and alighting floors and it is possible to improve the operation efficiency.