摘要:
A developer carrier for carrying a developer, the developer carrier comprises: an opposing region that opposes a latent image-carryable region on an image carrier, and a solid portion that is solid at an end portion of the developer carrier in a longitudinal direction thereof; wherein an end of the solid portion, which is on a side of a center of the developer carrier in the longitudinal direction, is located closer to the center of the developer carrier than an edge of the opposing region.
摘要:
An image forming apparatus of the present invention uses a highly viscous, dense developing liquid consisting of a carrier liquid and toner dispersed therein. A developing unit includes a developer carrier and a coating member for coating the developing liquid on the developer carrier. The developer carrier conveys the liquid to a developing zone where it faces an image carrier to thereby develop a latent image formed on the image carrier with the liquid. In the developing zone, the toner in the liquid, which faces the image of the image carrier, is caused to move toward the image by electrophoresis to thereby form a toner layer in which the toner is present in the carrier liquid and a carrier layer in which the toner is absent in the same. When the developer carrier and image carrier moved away from the developing zone part from each other, the toner is caused to move toward the image over a degree at which the developing liquid can separate at the boundary between the toner layer and the carrier layer.
摘要:
An image forming apparatus of the present invention includes a bias power supply for applying a bias VB to a developer carrier on which a developer is deposited. A charge potential deposited on an image carrier, which faces the developer carrier for forming a latent image thereon, is 400 V or below in absolute value. Assume that the potential of the image carrier is lowered to VL after exposure, that a development potential is |VB−VL|, that the maximum set value of the development potential for development is |VB−VL|max, and that the development potential varies in a range satisfying relations: |VB−VL|≦|VB−VL|max+|VB−VL|max×0.2 |VB−VL|≧|VB−VL|max−|VB−VL|max×0.2 |VB−VL|max≦300 V Then image density varies by a width of 10% of image density corresponding to the maximum set value of the development potential or less.
摘要翻译:本发明的图像形成装置包括偏置电源,用于将偏压V B B施加到其上沉积显影剂的显影剂载体上。 沉积在图像载体上的电荷电位,其面向用于在其上形成潜像的显影剂载体,其绝对值为400V或更低。 假设曝光后图像载体的电位降低到V L,则显影电位为| V B -V L | L, 开发发展潜力的最大设定值为| V | B | | | | | | | |,并且显影电位在满足关系的范围内变化:<? -line-formula description =“In-line Formulas”end =“lead”?> | V SUB> &lt;&lt;&lt;&lt; L&gt; | max + | V B&lt; 行公式“end =”tail“?> <?in-line-formula description =”In-line Formulas“end =”lead“?> | V B SUB> B> | B | B || V | B | B || B ||||||||,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .2 <?in-line-formula description =“In-line Formulas”end =“tail”?> <?in-line-formula description =“In-line Formulas”end =“lead”?> | V B SUB> L SUB> max <= 300 V <?in-line-formula description =“In-line Formulas”end =“tail”?>然后,图像浓度因 宽度为10%o f图像浓度对应于开发潜力的最大设定值以下。
摘要:
A method for a digital printing press includes estimating a developer voltage by applying a developer voltage estimation model to measurements of state parameters of the digital printing press.
摘要:
A color image forming apparatus includes a developing unit to which a developing bias with an AC component superposed is applied, wherein the DC voltage of the developing bias is adjusted to set the detected density of a solid image at a specified value, the light amount of radiation for exposing an image area having a width of a few dots adjacent to the white paper is adjusted to set the detected density of an image developed under a peripheral electric field at a specified value, and the gradation density curve is regulated by alternately adjusting the DC voltage, the light amount of radiation for exposing the image area having a width of a few dots adjacent to the white paper, and the amplitude of the AC component until the detected density of a mesh point image having an area ratio from 60 to 80% falls within a specified range.
摘要:
A voltage supply device for developing devices of a color image forming apparatus has a printed circuit board (PCB) connected with a high voltage supply source, a plurality of fixed contact point terminals provided at one end of the respective color developing devices, and a plurality of voltage changeover units for selectively connecting the PCB and the fixed contact point terminals to selectively supply the voltage from the high voltage supply source to the respective color developing devices. With the voltage supply device, contact point changeover is enabled without having to move the developing device, by using a relay part of a relatively simple structure during the change of developing device. Accordingly, deterioration of printing quality due to shock from the contact with the developing device is avoided, and the reliability of high voltage contact point changeover is improved. Further, the number of high voltage wiring harness, which is required for supplying voltage from the high voltage supply source to the developing devices, can be reduced.
摘要:
An image forming apparatus using a highly viscous, dense developing liquid consisting of a carrier liquid and toner. A developing unit including a developer carrier and a coating member for coating the developing liquid on the developer carrier. The developer carrier conveys the liquid to a developing zone to develop a latent image formed on the image carrier with the liquid. In the developing zone, the toner in the liquid is moved toward the image by electrophoresis to form a toner layer in which the toner is present in the earner liquid and a carrier layer in which the toner is absent in the same. When the developer carrier and image carrier are moved away from the developing zone, the toner is moved toward the image over a degree at which the developing liquid can separate at the boundary between the toner layer and the carrier layer.
摘要:
In an image forming apparatus employing a two-component developing system, there are provided printed-sheet number counting means; developing-device drive time integrating means for integrating time during which a developing device drives; and a toner replenishing motor drive time integrating means for integrating time during which a toner replenishing motor drives. Integrated drive time of the developing device and integrated drive time of the toner replenishing motor every fixed printed-sheet number, and the toner consuming quantity per drive time of the developing device is calculated from the extracted data. The toner charge quantity in a developer is predicted on the basis of the calculated data, and a developing bias voltage applied to the developing device is changed to thereby revise an image density.
摘要:
A developing apparatus includes developer carrying member for carrying a developer; wherein the developer carrying member is supplied with a developing voltage comprising a superimposed DC voltage component and AC voltage component to develop an electrostatic latent image formed on an image bearing member; switching means for switching an image density of a developed image on the image bearing member; wherein when the image density of the developed image is made higher than a predetermined image density in accordance with an output of the switching means, the frequency of the AC voltage component is made higher than a predetermined frequency.
摘要:
During printing on a thick paper, a Scorotron charger disposed upstream of a developing roller in a drum rotational direction charges a photosensitive drum to about 1000 V. Then a transfer roller disposed downstream of the developing roller lowers the potential to about 80 V. The transfer bias is turned off at the end of printing at T1 and does not lower the surface potential after this. When the surface of the drum opposite the transfer roller reaches a position opposite the Scorotron charger at T2, a DC motor and a charging bias are turned off. The surface potential of the drum that passes opposite the developing roller remains at about 400 V and is higher than developing roller potential until the photosensitive drum comes to a complete stop after idling at T3. This prevents the developing agent from adhering to the photosensitive drum.