Abstract:
A stator module and a motor including the stator module are provided. The motor includes a stator and a stator module. The rotor includes a rotor core and a plurality of rotor poles arranged around a circumference of the rotor core, each generating a magnetic flux. The stator module includes a first stator and a second stator disposed coaxially with each other, each being rotatable in a circumferential direction and each having a coil wound thereon, and a rotation driving unit which controls a rotation of the first stator and the second stator through the same angle in opposite directions, thereby controlling a flux linkage of a rotor according to the rotational angle of each of the first stator and the second stator.
Abstract:
A linear motor is provided. The linear motor includes a first member including a plurality of armature modules each comprising a magnetic core, a plurality of salient poles, and coils, where the coils are wound around a portion or all of the salient poles or the magnetic core between the salient poles; and a second member including one or more permanent magnet modules each including a plurality of permanent magnets each projected toward the magnetic core to be arranged between two salient poles of the armature module, where poles of the permanent magnets are alternated in a moving direction of the linear motor. Power is supplied to the coil of each armature module such that a thrust according to a traveling magnet fie is generated by using as one unit an S number of armature modules and a P number of permanent magnets arranged in the moving direction.
Abstract:
In this winding structure for a rectangular wire, a coil is formed that is provided with: a core that forms a core main body; a teeth portion that is formed extending inwards in a radial direction from the core; and a jaw portion that is formed extending in a circumferential direction from a distal end on the inner side in the radial direction of the teeth portion, and in which a rectangular wire is wound in multiple layers around a slot that is formed surrounded by the teeth portion, the core, and the jaw portion. The ellipticity, which is a ratio of a width dimension relative to a thickness dimension of a cross-section of the rectangular wire, becomes larger as it is wound from inner layers of the coil towards outer layers thereof, and the ellipticity of the rectangular wire in each of the layers is set in accordance with the width dimension of the slot in each layer of the coil such that the generation of gaps between the slot and the rectangular wire is suppressed.
Abstract:
A rotor includes permanent magnets arranged such that magnetic poles of N poles and S poles are arranged alternately in a rotation circumferential direction. The permanent magnets form a plurality of rows in a rotation axis direction. The rotor includes a change section in which arrangements of the magnetic poles change with respect to the rotation axis direction due to the permanent magnets being arranged such that arrangements of the magnetic poles change, in the rotation circumferential direction, between the permanent magnets in the plurality of rows. A stator includes tooth sections opposed to the rotor to surround the rotor, and auxiliary slots each of which is selectively formed at one portion of a front end portion of each tooth section in the rotation axis direction such that substantially a center of the auxiliary slot in the rotation axis direction is opposed to the change section.
Abstract:
A field structure of an electrical machine includes a plurality of field slots. Each field slot extends from a first surface of the field structure into the body of the field structure. Each filed slot also has a T-shaped cross-sectional area dimensioned to accommodate a magnet pole assembly comprising a corresponding cross-sectional area.
Abstract:
A rotor for a permanent-magnet linear actuator, comprising a series of permanent magnets which are supported by a shaft associated with means for its rotation, the permanent magnets being arranged laterally adjacent in the direction of the longitudinal axis of the shaft, with polarities that are shifted out of phase, in succession, by a preset angle.Each permanent magnet is constituted by a flat body which comprises a central portion for fixing to the shaft and at least two opposite symmetrical pole shoes which form the poles, with an external profile shaped like a circular arc.
Abstract:
The present invention relates to a permanent-magnet synchronous motor, particularly an electric three-phase motor, comprising a stator having a stator yoke in which stator teeth with interposed stator grooves are arranged, wherein on each stator tooth at least one winding is provided, further comprising a rotor having permanent magnets, wherein the stator teeth are arranged in layers as disks in the axial direction of the stator and designed at least as two different disks, wherein the stator teeth in a first disk are connected peripherally among each other at the ends thereof pointing toward the rotor in the form of a stator star by a connecting bridge and in a second disk have an interruption instead of the connecting bridge. The present invention further relates to an electric power-assisted steering system.
Abstract:
According to the invention, the torque ripple of electrical machines is supposed to be further reduced. For this purpose, it is provided to dispose the magnetic poles, for example, on the surface of a rotor in a plurality of sections (A1, A2) at different angles. The result are helix angles (β1, β2), which have different amounts. Also more than two different helix angles, up to a continuous course of the boundary lines (G4) between the poles, can be implemented.
Abstract:
A brushless motor has a stator and a rotor rotatably installed inside of the stator. The stator includes a stator core with teeth protruding inwardly and windings wound on the teeth. The rotor includes a shaft, a rotor core fixed on the shaft, and a ring magnet fixed to the circumferential outer surface of the rotor core. The magnet includes a plurality of magnetic poles radially magnetized so that north poles and south poles are arranged alternately in the circumferential direction. Boundary lines between magnetic poles are skewed by an angle relative to an axis of the shaft.
Abstract:
An electric machine (10; 100) comprises a rotor (14) having permanent magnets (24) and a stator (12) having coils (22) wound on stator bars (16) for interaction with the magnets across an air gap (26a, b) defined between them. The rotor has two stages (14a, b) arranged one at either end of the bars. The bars have a shoe (18a, 8) at each end of each bar that links magnetic flux through the bars with said magnets on each stage. Adjacent shoes facing the same stage of the rotor have a high-reluctance shoe gap (27) between them; adjacent magnets on each stage of the rotor have a high-reluctance magnet gap (25) between them; and the shoe and magnet gaps (25, 27) are angled with respect to each other such that they engage progressively as the rotor rotates. Alternatively, the shoes facing each stage are in a ring of connected shoes such that the magnets experience a continuous reluctance that is at least 90% constant as a function of rotor position. The bars (16) and shoes (18) are formed separately from one another and at least a part of each is formed by moulding soft-iron particles so that the particles have a short dimension that is arranged transverse a reluctance-plane. The bars and shoes are assembled so that the reluctance-plane of the bar is parallel a longitudinal axis (16a) of the bar and said reluctance-plane of the shoe is transverse said longitudinal axis.