Abstract:
A machine vision vehicle wheel alignment service system console with an integrated internal structure for supporting a vertical post carrying a machine vision sensor cross member. The vertical post is secured at least partially within the confines of a base unit and has a lower end which terminates at a position which is spaced vertically above the floor of the console, adjacent to an upper surface of the base unit.
Abstract:
A robotic tire changing machine having a processing system is configured with software instructions to carry out the procedures for tire mounting and demounting, and with software instructions to detect and respond to abnormal operating conditions during a tire mounting or demounting procedure. A specific response to the detection of an abnormal operating condition by the processing system is guided by the software instructions and is associated with the particular state in which the tire changing machine is in and/or the current step of an ongoing tire mounting or demounting procedure. The specific responses may include, but are not limited to, providing a prompt or instruction to an operator, providing a warning to an operator, carrying out one or more additional procedural steps, suspending operations to await an operator action, or limiting movement of articulated components during the tire mounting or demounting procedure.
Abstract:
A procedure for measuring and adjusting an alignment of each axle of a trailer or semi-trailer while the trailer or semi-trailer is coupled to a tow vehicle by a hitch, tow bar, kingpin, or fifth wheel hitch. Measurements of the alignment of each axle of the trailer or semi-trailer are acquired from wheel-mounted sensor means utilizing either directly or indirectly a reference line of the trailer and an established reference point on the tow vehicle. A thrust angle of a first trailer or semi-trailer axle is referenced directly to the established reference line, while scrub angles associated with additional trailer or semi-trailer axles are referenced either directly or indirectly to the first trailer or semi-trailer axle, and indirectly to the established reference point. Any necessary adjustments are made to the first trailer or semi-trailer axle to bring the axle thrust angle to within a specification tolerance, and then to the scrub angle of each additional axle.
Abstract:
A machine vision vehicle wheel alignment system for acquiring measurements associated with a vehicle. The system includes at least one imaging sensor having a field of view and at least one optical target secured to a wheel assembly on a vehicle within the field of view of the imaging sensor. The optical target includes a plurality of visible target elements disposed on at least two surfaces in a determinable geometric and spatial configuration which are calibrated prior to use. A processing unit in the system is configured to receive at least two sets of image data from the imaging sensor, with each set of image data acquired at a different rotational position of the wheel assembly around an axis of rotation and representative of at least one visible target element on each of the two surfaces, from which the processing unit is configured to identify said axis of rotation of the wheel assembly.
Abstract:
A machine vision vehicle wheel alignment system for acquiring measurements associated with a vehicle. The system includes at least one imaging sensor having a field of view and at least one optical target secured to a wheel assembly on a vehicle within the field of view of the imaging sensor. The optical target includes a plurality of visible target elements disposed on at least two surfaces in a determinable geometric and spatial configuration which are calibrated prior to use. A processing unit in the system is configured to receive at least two sets of image data from the imaging sensor, with each set of image data acquired at a different rotational position of the wheel assembly around an axis of rotation and representative of at least one visible target element on each of the two surfaces, from which the processing unit is configured to identify said axis of rotation of the wheel assembly.
Abstract:
A method for contactless measurements of a vehicle wheel assembly by acquiring a sequence of images as the vehicle wheel assembly moves within a projected pattern of light. Images of the vehicle wheel assembly are acquired and processed to identify the portions of the images corresponding to the wheel assembly, such as by recognition of the wheel rim edge. The identified portion of each image is cropped and a resulting point cloud of data rotational aligned by an optimization procedure to remove the effect of wheel translation and rotation between each image, as well as to identify a center of rotation and amount of rotation for each image which yields a best-fit result. Superimposing the resulting point clouds produces a generated image with a high density of data points on the optimally fit surfaces of the wheel assembly, which can be used to further refine the axis of rotation determination.
Abstract:
A vehicle wheel balancer system having a processing system and a spindle shaft upon which a vehicle wheel assembly is mounted for measurement of imbalance characteristics and forces. The processing system is configured with software instructions to evaluate the remaining imbalance present in a vehicle wheel assembly following the application of imbalance correction weights, and to determine if the remaining imbalance is the result of the vehicle wheel assembly having deviated from an expected rotational position during the time between the measurement of the imbalance and the application of the imbalance correction weights. In the event of such a deviation, the processing system is further configured to provide the operator with a suitable warning to evaluate and correct the mounting of the vehicle wheel assembly before proceeding to rebalance or re-measure the vehicle wheel assembly.
Abstract:
A method and apparatus for determining the alignment of a vehicle wheel using an optical target assembly secured to the vehicle wheel in a non-determined position, the optical target assembly having a dimensionally stable shape and a plurality of optical target elements disposed on a plurality of target surfaces. Images of the optical target elements are acquired by an imaging system, together with target identifying indicia, and utilized together with previously stored target characterization data to determine a spatial orientation of the optical target assembly and an alignment of the vehicle wheel onto which it is secured.
Abstract:
A computer-based vehicle service system, such as a wheel alignment system, is configured with a tire pressure monitoring system interface to acquire measurements of the air pressure directly from tire pressure monitoring system sensors installed in the tires of a vehicle undergoing a service procedure. The vehicle service system is further configured to utilize the acquired air pressure measurements to complete at least one vehicle diagnostic procedure.
Abstract:
Methods and apparatus for a vehicle wheel alignment service procedure and an for acquisition of vehicle measurements, which imparts a gravity-induced rolling movement to a vehicle on a vehicle support structure to transition the vehicle from a first vehicle support surface over a descending roll ramp to a resting position on a second vehicle support surface.